ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration VELUX Group

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-VEL-20220114-CBB2-EN

Issue date 24.05.2022 Valid to 23.05.2027

VELUX flashings for flat roofing material VELUX Group

www.ibu-epd.com | https://epd-online.com

General Information

VELUX Group EDN flashing for flat roofing material Programme holder Owner of the declaration IBU - Institut Bauen und Umwelt e.V. **VELUX Group** Ådalsvej 99 Hegelplatz 1 2970 Hørsholm 10117 Berlin Germany Denmark **Declaration number** Declared product / declared unit 1m² flashing for flat roofing material EDN EPD-VEL-20220114-CBB2-EN The declared unit is based on the configuration of a standard size window measuring 0.78m x 1.178m. This declaration is based on the product Scope: category rules: Productline EDN - Flashing; manufactured by VELUX in France, Hungary, Poland, Denmark and China for Windows and doors, 01.2021 sale in Europe. (PCR checked and approved by the SVR) Issue date Declaration according to ISO 14025 and EN 15804 describing specific environmental performances of the 24.05.2022 construction product. Valid to The owner of the declaration shall be liable for the 23.05.2027 underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as EN 15804. Verification Man Peter The standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025:2011 Dipl. Ing. Hans Peters internally externally (chairman of Institut Bauen und Umwelt e.V.) Prof. Dr. Birgit Grahl Dr. Alexander Röder (Managing Director Institut Bauen und Umwelt e.V.)) (Independent verifier)

Product

Product description/Product definition

The VELUX flashings for flat roofing material are products for sale in the European market. This group of flashings cover a large range of different flashing types for profiled roofing material.

The different flashing types fit for installation with either a single window configuration or configurations of multiple windows installed adjacent to each other. All the flashings consist mainly of aluminium.

The calculations are based on the representative flashing for flat roofing material named EDN. In the LCA, the EDN was assessed to be a conservative choice for a representative flashing for profiled roofing material type.

For the use and application of the product the respective national provisions at the place of use apply, in Germany for example the building codes of

the federal states and the corresponding national specifications.

Application

VELUX flashings for flat roofing material are used in renovation and new build. Either installed as a single window or in a combination of multiple windows.

Technical Data

Constructional data

Name	Value	Unit
Reaction to fire EN 13501-1	E	class

Performance data of the product with respect to its characteristics in accordance with the relevant technical provision (no CE-marking).

Base materials/Ancillary materials

Name	Value	Unit
Aluminium	96	%
Galvanized steel	1	%
Stainless steel	0.4	%
Polybutadiene	1	%
Polyethylene LD	1	%

REACH

This product/article/at least one partial article contains substances listed in the candidate list (date: 17.01.2022) exceeding 0.1 percentage by mass: no.

Recycled content

Name	Value	Unit
Aluminium	50	%
Steel	20	%
Polybutadiene	0	%
Polyethylene LD	0	%

Reference service life

A calculation of the reference service life according to *ISO 15686* is not possible.

The Bundesinstitut für Bau, Stadt und Raumforschung/Federal office for building and regional planning (*BBSR*) table declares for the complete roof window a service life dependent on the applied window frame material between 25 and ≥ 50 years. This includes collars and flashings as declared with this EPD.

LCA: Calculation rules

Declared Unit

The declared unit is one m² related to a reference window, that the flashing is installed in connection with.

The declared unit is based on the representative product measuring 0.78m x 1.178m.

Declared unit

Name	Value	Unit
Declared unit	1	m ²
Weight per area	3.30	kg/representative product
Weight per area	3.59	kg/declared unit

System boundary

Type of EPD: Cradle to gate - with options. The following life cycle stages were considered:

Production stage A1-A3:

Consideration of the production of raw materials and their processing; transport of major material to the manufacturing site; assembly of semi-finished products to the final product; packaging material (including waste paper input for paper and cardboard).

End-of-Life stage C1, C2, C3:

C1: a manual demolition is assumed, resulting in indicator value "0".

C2: For the transport to EoL by truck a distance of 50 km is assumed.

C3: A scenario for the incineration of plastics in a waste incineration plant (WIP) is assumed.

The EoL-Scenario does not assume waste to be disposed of on a landfill site. Module C4 is declared as "0"

Benefits for the next product system D:

Resulting electrical and thermal energy from the WIP, avoiding the generation of electricity and heat via fossil fuels, is considered.

The amount of metals after the reduction due to the net-flow calculations is sent to a recycling process. The effort for recycling, as well as the benefit for the regained metals are declared in module D.

Contribution of waste flows is considered in the modules where they occur.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

The software GaBi is used accompanied by the GaBi background data base (version 2021.2, 2021).

LCA: Scenarios and additional technical information

Characteristic product properties Information on biogenic Carbon

The following declared values refer to the declared unit of 1m².

Information on describing the biogenic Carbon Content at factory gate

The declared biogenic content comprises the paper manual and the packaging material consisting of cardboard, paper and wood. As module A5 is not declared, the information on packaging supports further EoL calculations.

Name	Value	Unit
Biogenic Carbon Content in product	0	kg C
Biogenic Carbon Content in accompanying packaging	0.735	kg C

The value refers to the following packaging material (per 1m²):

Paper (manual): 0.020kg, Cardboard packaging: 1.684kg, Paper insert: 0.007kg, PE-LD: 0.013kg

Reference service life

Name	Value	Unit
Life Span (according to BBSR) depending on window frame material	25 - 50	а

End of life (C1-C4)

Name	Value	Unit
Collected separately waste type	3.59	kg
Recycling	3.5	kg
Energy recovery	0.07	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
Aluminium (net-flow calculation)	2.31	kg/1m²
Marrilliam (not-now calculation)	2.51	product
Steel (net-flow calculation)	0.04	kg/1m²
Steel (Het-How Calculation)	0.04	product
Stainless steel (net-flow	8.18E-03	kg/1m²
calculation)	0.10E-03	product

LCA: Results

PRODUCT STAGE						EM BO				ICLUD	ED IN	LCA	ND = M	IODU	LE OR	INDIC	ATOR NOT
A1	PRODUCT STAGE ON PROCESS											ENI	D OF L		LOADS BEYOND THE SYSTEM		
X	Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
Core Indicator	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Core Indicator	X	Х	Х	ND	ND	ND	ND	MNR	MNR	MNR	ND	ND	X	Х	X	X	X
Global warming potential - total Ing CO-Eq. 2.30E+1 0.00E+0 1.09E-2 7.29E-1 0.00E+0 -1.772E+1 Global warming potential - tosal fuels Ing CO-Eq. 2.57E+1 0.00E+0 1.09E-2 7.29E-1 0.00E+0 -1.772E+1 Global warming potential - tosal fuels Ing CO-Eq. 2.57E+1 0.00E+0 1.09E-2 7.29E-1 0.00E+0 4.32E-2 GWP from land use and land use change Ing CO-Eq. 1.29E+1 0.00E+0 1.29E-5 4.48E-5 0.00E+0 4.32E-2 GWP from land use and land use change Ing CO-Eq. 1.79E-1 0.00E+0 2.18E-1 2.11E-16 0.00E+0 -1.90E+1 Additication potential of the stratespheric coore layer Ing CO-Eq. 1.79E-1 0.00E+0 2.18E-1 2.11E-16 0.00E+0 -1.90E+1 Additication potential developed transmission Ing PEq. 1.14E-1 0.00E+0 2.18E-5 3.16E-5 0.00E+0 -1.90E+1 Additication of uniterial searching freshware Ing PEq. 1.14E-1 0.00E+0 3.22E-8 3.26E-8 0.00E+0 -8.89E-6 Eutrophication, facilities of the consideration of the consideration of the companion of the consideration of the consideration potential for confosal resources Ing SE-Eq. 0.00E+0 1.90E+1 4.17E-1 0.00E+0 -1.10E-2 0.00E+0 -1.10E-2 0.00E+0 1.10E-2 0.00E+0 0.00E	RESL	JLTS	OF TH	IE LCA	۱ - EN۱	/IRON	MENT	AL IM	PACT	accor	ding t	o EN	15804+	A2: 1	m² E[N	
Global warming potential - bosen fuels Ng CO_Eq. 2.57E+1 0.00E+0 1.72E+1 0.00E+0 0			Core	e Indicato	r			Unit	Α.	1-A3	C1		C2	_ c	3	C4	D
Global verming potential - biogenic Rig CO-Eq.] -2,09E-0 0.00E+0 1.29E-5 0.00E+0 4.32E-2 GWP from land use and land use change Rig CO-Eq.] -2,79E-1 0.00E+0 1.29E-5 0.00E+0 4.32E-2 Despition potential of the stratospheric ozone layer Acidification potential of the stratospheric ozone layer Acidification potential accumulated exceedance Rig CP-Eq.] 1.14E-1 0.00E+0 2.14E-18 2.11E-16 0.00E+0 1.90E-14 Acidification potential accumulated exceedance Rig P-Eq.] 7.70E-5 0.00E+0 3.22E-8 3.26E-8 0.00E+0 6.88E-6 Eutrophication, faction of intilients reaching mainte end Rig N-Eq.] 1.86E-2 0.00E+0 8.86E-6 2.46E-5 0.00E+0 -1.10E-2 Eutrophication, accumulated exceedance Rig N-Riq 1.98E-1 0.00E+0 1.00E-4 4.17E-4 0.00E+0 -1.20E-1 Formation potential for prospheric coron photochemical oxidants Rig N-Riq 1.98E-1 0.00E+0 1.91E-5 7.12E-5 0.00E+0 -1.20E-1 Abiotic depletion potential for non-fosal resources Rig SN-Eq.] 5.54E-6 0.00E+0 1.91E-5 7.12E-5 0.00E+0 -1.20E-1 Abiotic depletion potential for non-fosal resources Rig SN-Eq.] 5.54E-6 0.00E+0 0.10E-4 7.49E-2 0.00E+0 -2.19E-2 Abiotic depletion potential for non-fosal resources Rig SN-Eq.] 5.54E-6 0.00E+0 0.10E-6 0.00E+0 0.00E+0 -2.19E-2 Abiotic depletion potential for non-fosal resources Rig SN-Eq.] 5.56E-2 0.00E+0 0.10E-6 0.00E+0 0.00E+0 0.00E+0 -2.19E-2 Abiotic depletion potential for non-fosal resources Rig SN-Eq.] 5.56E-2 0.00E+0 0.10E-6 0.00E+0 0		Glo	bal warm	ning poten	tial - total		[kg	CO ₂ -Eq.] 2.3	30E+1	0.00E	:+0	1.09E-2	7.29	9E-1		
GWP from land use and land use change Rg CO-Eq. 1.795-2 0.00E+0 2.885-5 2.00E+0 4.225-3																	
Depletion potential of the stratespheric ozone layer Rog CFC11-Eq. 270E-11 0.00E-0 2.14E-18 2.11E-16 0.00E+0 1.19E-14 0.00E+0 1.19E-15 0.00E+0 0.19E-5 0.00E+0 8.86E-2 Eutrophication, fraction of nutrients reaching freshwater end compartment Rog P-Eq. 7.70E-5 0.00E+0 3.22E-8 3.28E-8 0.00E+0 6.88E-6 0.00E+0 0.88E-6 0.00E+0 0																0.00E+0	
Additication potential, accumulated exceedance Inchine Inchi	Depl	etion pot	ential of t	he stratos	pheric oz	one layer					0.00E	+0					
Eutrophication, fractation of nutriens is reaching marine end compartment Rig N=q 1.866=2 0.000=+0 8.866=6 2.466=5 0.000=+0 -1.106=2 0.000=+0 1.0								l H⁺-Eq.	1.	14E-1			2.14E-5	9.1	5E-5	0.00E+0	-8.64E-2
Compartment Ng Feet 1,095-2 0,005-1 0,005-2 0,005-1 0,005-2 0,005-1 0,105-2 0,005-1 0,105-2 0,005-1 0,105-2 0,005-1 0,105-2 0,005-1 0,00	Eutropi	nication,				resnwate	er k	g P-Eq.]	7.	70E-5	0.00E	+0	3.22E-8	3.26	6E-8	0.00E+0	-6.85E-6
Eutrophication, accumulated exceedance mon NEq. 1,98E-1 0,00E+0 1,00E-4 4,17E-4 0,00E+0 1,32E-1 5,00E-6 0,00E+0 1,91E-5 7,12E-5 0,00E+0 3,42E-2 3,	Eutroph	nication, 1				marine er	nd [kọ	N-Eq.]	1.	86E-2	0.00E	:+0	8.86E-6	2.46	6E-5	0.00E+0	-1.10E-2
Abiotic depletion potential for non-fossil resources I/q Sb-Eq 594-66 0,005-60 9,005-10 0,005-10	ı	Eutrophic				ance	[m	ol N-Eq.]	1.	98E-1	0.00E	:+0	1.00E-4	4.17	7E-4	0.00E+0	-1.20E-1
Abiotic depletion potential for non-fosal resources Ikg 5.94E-6 0.00E+0 9.60E-10 3.07E-9 0.00E+0 -1.88E-6 Abiotic depletion potential for fosal resources IkJ 3.56E+2 0.00E+0 1.44E-1 2.70E-1 0.00E+0 -2.19E+2 Water (user) deprivation potential, deprivation-verightid Im* world-Eq deprived 3.60E+0 0.00E+0 1.01E-4 7.49E-2 0.00E+0 -2.82E+0 RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 m² EDN Indicator Unit A1-A3 C1 C2 C3 C4 D Renewable primary energy as energy carrier MJ 1.72F=2 0.00E+0 8.30E-3 5.84E-2 0.00E+0 -1.01E+2 EDN Renewable primary energy resources as material utilization MJ 2.72F=1 0.00E+0	Formation	on poten			ozone ph	otochemi	cal [kg NI			50E-2	0.00E	+0	1.91E-5	7.12	2E-5	0.00E+0	-3.42E-2
Abiotic depletion potential for fossi resources IMJ 3.56E+2 0.00E+0 1.44E-1 2.70E-1 0.00E+0 2.19E+2 Water (user) deprivation potential, deprivation-weighted Im world-Eq deprived 3.60E+0 0.00E+0 1.01E-4 7.49E-2 0.00E+0 2.82E+0	Abic	tic deple			n-fossil re	esources						+0	9.60E-10			0.00E+0	-1.88E-6
RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 m² EDN	Al	biotic dep	oletion po	tential for	fossil reso	ources		[MJ]	3.								
Indicator	Water (n-weighte					0.00E	0.00E+0 1.01E-4		7.49	7.49E-2 0.00E		-2.82E+0
Renewable primary energy as energy carrier [MJ] 1.27E+2 0.00E+0 8.30E-3 5.84E-2 0.00E+0 0.						ICATO			CRIB	E RES	OURC	E US	E accor	ding	to EN	15804-	-A2: 1 m²
Renewable primary energy resources as material utilization [MJ] 2.73E+1 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 1.01E+2 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 1.01E+2 0.00E+0 0.00E+				Indic	ator				Unit	A1-A3	3	C1	C2		C3	C4	D
Total use of renewable primary energy resources MJ 1.55E+2 0.00E+0 8.30E-3 5.84E-2 0.00E+0 -1.01E+2		Rer	ewable p	orimary en	nergy as e	energy can	rier		[MJ]	1.27E+			8.30E-3	3 5	.84E-2	0.00E+	0 -1.01E+2
Non-renewable primary energy as energy carrier IMJ 3.53E+2 0.00E+0 1.45E-1 3.83E+0 0.00E+0 -2.20E+2 Non-renewable primary energy as material utilization IMJ 3.56E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Total use of non-renewable primary energy resources IMJ 3.57E+2 0.00E+0 1.45E-1 2.70E-1 0.00E+0 0.20E+0 Use of secondary fuels IMJ 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of renewable secondary fuels IMJ 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels IMJ 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of not-renewable secondary fuels IMJ 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of net fresh water Im ³ 3.31E-1 0.00E+0 9.51E-6 1.78E-3 0.00E+0 2.20E+2 RESULTS OF THE LCA - WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: Im ² EDN Indicator Unit A1-A3 C1 C2 C3 C4 D Hazardous waste disposed Ikg 6.03E-7 0.00E+0 7.63E-12 4.83E-11 0.00E+0 4.88E-6 Non-hazardous waste disposed Ikg 5.97E+0 0.00E+0 2.27E-5 6.54E-2 0.00E+0 -5.14E+0 Radioactive waste disposed Ikg 2.37E-2 0.00E+0 0.00	Re							n					_	_			
Non-renewable primary energy as material utilization MJ 3.56E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Total use of non-renewable primary energy resources MJ 3.57E+2 0.00E+0 1.45E+1 2.70E+1 0.00E+0 0.00E																	
Total use of non-renewable primary energy resources																	
Use of renewable secondary fuels MJ 0.00E+0 0.00														2	.70E-1		
Use of non-renewable secondary fuels MJ 0.00E+0																	
Use of net fresh water																	
RESULTS OF THE LCA - WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 m² EDN											_						
Indicator							ATEG	ORIE								•	-
Hazardous waste disposed [kg] 6.03E-7 0.00E+0 7.63E-12 4.83E-11 0.00E+0 4.88E-6				Indic	ator				Unit	A1-A3		C1	C2		C3	C4	D
Non-hazardous waste disposed kg 5.97E+0 0.00E+0 2.27E-5 6.54E-2 0.00E+0 -5.14E+0			Нат			sed								2 4			
Radioactive waste disposed Rg 2.37E-2 0.00E+0 2.63E-7 1.06E-5 0.00E+0 -1.32E-2																	
Materials for recycling [kg] 0.00E+0 0									[kg]								
Materials for energy recovery [kg] 0.00E+0 0.00E																	
Exported electrical energy [MJ] 0.00E+0								+									
RESULTS OF THE LCA - additional impact categories according to EN 15804+A2-optional: 1 m² EDN	Exported electrical energy								[MJ]	0.00E+	0 0.	00E+0	0.00E+0 1.60E+0		60E+0	0.00E+	0 0.00E+0
Indicator																	0.00E+0
Potential incidence of disease due to PM emissions [Disease Incidence] 1.20E-6 0.00E+0 1.30E-10 1.25E-9 0.00E+0 -9.09E-7																	
Potential Human exposure efficiency relative to U235 [kBq U235- Eq.] 4.59E+0 0.00E+0 1.30E-10 1.25E-9 0.00E+0 -9.09E-7				Indica	ntor				Unit	A1-A3		C1	C2		C3	C4	D
Potential Human exposure efficiency relative to U235 [kBq U235-Eq.] 4.59E+0 0.00E+0 3.84E-5 1.40E-3 0.00E+0 -2.76E+0	Potential incidence of disease due to PM emissions									1.20E-	6 0.	00E+0	1.30E-1	0 1	25E-9	0.00E+	0 -9.09E-7
Potential comparative toxic unit for ecosystems CTUe 1.25E+2 0.00E+0 1.07E-1 1.91E-1 0.00E+0 -7.94E+1	F	Potential	Human e	exposure (efficiency	relative to	U235	[kB	q U235-	4.59E+	0 0.	00E+0	3.84E-5	5 1	40E-3	0.00E+	0 -2.76E+0
Potential comparative toxic unit for humans - not cancerogenic [CTUh] 2.99E-7 0.00E+0 1.18E-10 1.11E-9 0.00E+0 -2.12E-7								[(CTUe]								
	1.0161								[-]								

Disclaimer 1 – for the indicator "Potential Human exposure efficiency relative to U235".

This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure or radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators "abiotic depletion potential for non-fossil resources", "abiotic depletion potential for fossil resources", "water (user) deprivation potential, deprivation-weighted water consumption", "potential comparative toxic unit for ecosystems", "potential comparative toxic unit for humans – cancerogenic", "Potential comparative toxic unit for humans – not cancerogenic", "potential soil quality index". The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

Disclaimer 3 – for "potential soil quality index". Due to a data lack in the foreground data of VELUX, the result has a very high uncertainty and refers only to the background data, which contain respective information.

References

BBSR

BBSR, 24.02.2017, Nutzungsdauer von Bauteilen nach BNB

DIN EN 13501

DIN EN 13501-1:2019-05: Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests

DIN EN ISO 10077

DIN EN ISO 10077-1:2020-10: Thermal performance of windows, doors and shutters - Calculation of thermal transmittance

EN 15804

EN 15804:2012+A2:2019, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

GaBi

GaBi Software and GaBi Database by Sphera Solution GmbH, version: 2021.2, 2021

IBU 2021

Institut Bauen und Umwelt e.V.: General Instructions for the EPD programme of Institut Bauen und Umwelt e.V., Version 2.0, Berlin: Institut Bauen und Umwelt

ISO 14025

EN ISO 14025:2011, Environmental labels and declarations — Type III environmental declarations — Principles and procedures. e.V., 2021, www.ibu-epd.com

ISO 15686

ISO 15686:2011-05: Buildings and constructed assets - Service life planning - Part 1: General principles and framework

PCR part A

Calculation Rules for the Life Cycle Assessment and Requirements on the Project Report according to EN 15804+A2:2019, version 1.2, Berlin: Institut Bauen und Umwelt e.V., 2021

PCR part B

Requirements on the EPDS for Windows and doors, version 01-2021, Berlin: Institut Bauen und Umwelt e.V.

REACH

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

Regulation (EU) No. 305/2011 (CPR)

Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonized conditions for the marketing of construction products and repealingCounsicl Directive 89/106/EEC

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1

10117 Berlin Germany

Tel +49 (0)30 3087748- 0 Fax +49 (0)30 3087748- 29 Mail info@ibu-epd.com Web www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1

10117 Berlin Germany

+49 (0)30 - 3087748- 0 Tel +49 (0)30 - 3087748 - 29 Fax Mail info@ibu-epd.com Web

www.ibu-epd.com

Author of the Life Cycle **Assessment**

Angela Schindler Umweltberatung

Tüfinger Str. 12 88682 Salem Germany

Fax Mail Web

Web

Tel

07553 919 9456 07553 918 8204

angela@schindler-umwelt.de www.schindler-umwelt.de

Daxner & Merl GmbH Lindengasse 39/8 1070 Wien Austria

Tel +43 676 849477826 Fax Mail

+43 42652904 office@daxner-merl.com www.daxner-merl.com

Owner of the Declaration

VELUX Group Ådalsvej 99 2970 Hørsholm Denmark

+4545164726 Tel

Fax Mail

jakob.roerbech@velux.com

Web www.velux.com