ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration dormakaba International Holding GmbH

Publisher Institut Bauen und Umwelt e.V. (IBU)

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-DOR-20230053-CBA1-EN

Issue date 30.06.2023 Valid to 29.06.2028

ES 200 dormakaba

www.ibu-epd.com | https://epd-online.com

General Information

dormakaba

Programme holder

IBU – Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany

Declaration number

EPD-DOR-20230053-CBA1-EN

This declaration is based on the product category rules:

Drive systems for automatic doors and gates, 01.08.2021 (PCR checked and approved by the SVR)

Issue date

30.06.2023

Valid to

29.06.2028

Dipl.-Ing. Hans Peters

(Chairman of Institut Bauen und Umwelt e.V.)

ES 200

Owner of the declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany

Declared product / declared unit

1 piece of the product: Automatic Sliding Door Operator ES 200, consisting of the following items:

- ES 200 Standard Sliding Door Operator
- Product packaging

Scope:

This Environmental Product Declaration refers to a specific sliding door operator ES 200 Standard manufactured by dormakaba. This EPD is also representative for the ES 200-2D, ES 200 EASY and ES 200 EASYplus. The production site is located in Ennepetal (Germany). Green electricity is being used at this production site.

Data represents the year 2022.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as *EN 15804*.

Verification

The standard EN 15804 serves as the core PCR
Independent verification of the declaration and data according to ISO
14025:2011

internally x externally

-x vanis

Florian Pronold (Managing Director Institut Bauen und Umwelt e.V.)

Wins

Dr.-Ing. Wolfram Trinius, (Independent verifier)

Product

Product description/Product definition

The automatic sliding door operator is a solution for any fields of application and scope of operation. The ES 200 allows dormakaba to supply a drive system that covers all applications due to its modular construction with a low number of components. The modular and flexible drive system is available in the following variants:

- ES 200 Standard
- ES 200 2D
- ES 200 EASY
- ES 200 EASYplus.

For the use and application of the product the respective national provisions at the place of use apply. For ES 200 the standards which can be applied are the following:

- EN 18650
- EN 16005
- EN 60335
- EN 61000
- ISO 13849
- Machinery Directive 2006/42/EC
- 2011/65/EU ROHS3 Directive

The CE marking takes into account the proof of conformity with the respective harmonized standards based on the legal provisions above.

Application

The automatic sliding door operator ES 200 is used as a drive for automating sliding door systems as well as escape and rescue routes. Applications are available for single- and double leaf doors.

Technical Data

The ES 200 has following technical properties:

Name	Value	Unit
Height maximum	150	mm
Installation depth	180	mm
Opening and closing force maximum	150	N
Opening speed maximum	70	cm/s
Closing speed maximum	50	cm/s
Hold open time maximum	180	S
Supply voltage, frequency maximum	60	Hz
Class of protection	20	IP

Performance data of the product with respect to its characteristics in accordance with the relevant technical provision which can be applied are mentioned above.

Base materials/Ancillary materials

The major material composition including the packaging of the product is listed below:

Name	Value	Unit
Aluminium	41	%
Steel	26	%
Electronics	14	%
Paper	12	%
Plastic	7	%

The product includes partial articles which contain substances listed in the Candidate List of REACH Regulation1907/2006/EC (date: 17.01.2023) exceeding 0.1 percentage by mass: yes

 Lead (Pb): 7439-92-1 (CAS-No) is included in the battery and some of the alloys used. The concentration in each individual alloy does not exceed 4.0% (by mass).

The Candidate List can be found on the ECHA websiteaddress: https:echa.europa.eu/de/home.

Reference service life

The reference service life for the ES 200 amounts to 10 years and depends on the application and frequency of use. For repairs and renewals, suitable spare parts are available. The sliding door operators are tested and certified *EN 16005*, meaning they are designed to withstand a minimum of 1.000.000 cycles.

LCA: Calculation rules

Declared Unit

The declared unit is 1 piece of the product: ES 200

Name	Value	Unit
Declared unit	1	pce.
Mass of declared product	40,41	kg

System boundary

The type of EPD is: cradle to gate with options, modules C1-C4, and module D (A1-A3 + C + D and additional modules: A4 + A5 + B6)

Production - Module A1-A3

The product stage includes:

— A1, raw material extraction, processing and mechanical treatments, processing of secondary material input (e.g. recycling processes),
 — A2, transport to the manufacturer,
 — A3, manufacturing and assembly including provision of all materials, products and energy, as well as waste processing up to the end-of waste state.

Construction stage - Modules A4-A5

The construction process stage includes:

- A4, transport to the building site;
- A5, installation into the building;

including provision of all materials, products and energy, as well as waste processing up to the end-of waste state or disposal of final residues during the construction process stage.

Use stage - Module B6

The use stage related to the operation of the building includes:

- B6, operational energy use

End-of-life stage- Modules C1-C4 and D

The end-of-life stage includes:

- C1, de-construction, demolition:
- C2, transport to waste processing;
- C3, waste processing for reuse, recovery and/or recycling;
- C4, disposal;

including provision and all transport, provision of all materials, products and related energy and water use.

Module D (Benefits and loads beyond the system boundary) includes:

— D, recycling potentials, expressed as net impacts and benefits

Geographic Representativeness

Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Germany

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account. Background database: GaBi, SP40

LCA: Scenarios and additional technical information

Characteristic product properties biogenic carbon

Information on describing the Biogenic Carbon Content at factory gate

Name	Value	Unit
Biogenic carbon content in product	0.276	kg C
Biogenic carbon content in accompanying packaging	1.569	kg C

The following technical scenario information is required for the declared modules

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel (per 1 kg)	0.00276	I/100km
Capacity utilisation (including empty runs)	55	%
Transport distance via medium truck	100	km

The product is transported via truck and ship. The product is stored in the dormakaba logistic center in Germany. The main distribution region is Europe.

In order to allow scaling to a specific point of installation 100 km are declared as well.

Installation into the building (A5)

Name	Value	Unit
Waste packaging (paper and plastic)	4,26	kg

Reference service life

Name	Value	Unit
Life Span according to the manufacturer	10	а

Operational energy use (B6)

Name	Value	Unit
Electricity consumption for 1 year	189.29	kWh
Days per year in use	365	days
Active state (hours/day)	1.8	h
Idle state (hours/day)	22.2	h
Electrical power active state	14.31	W
Electrical power idle state	22.2	W

End of life (C1-C4)

C1: The product dismantling from the building is done manually without environmental burden.

Name	Value	Unit
Collected separately waste type	36.2	kg
Recycling	32.2	kg
Energy recovery	2.75	kg
Landfilling	1.17	kg
Transport to waste management	50	km

The product is disassembled in a recycling process. Material recycling is then assumed for the metals and electronics. The plastic components are assumed to be incinerated with energy recovery. Electromechanics and minor proportions of residues arising from the recycling process are landfilled. Region for the End of Life is: Global.

Reuse, recovery and/or recycling potentials (D), relevant scenario information

The collection rate is 100%.

LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

Product stage Construction process stage											End of life stage			Benefits and loads beyond the system boundaries		
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MNR	MNR	MNR	Х	MND	Х	Х	Х	Х	Х

RESULTS OF T	RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 piece ES 200												
Parameter	Unit	A1-A3	A4	A5	B6	C1	C2	C3	C4	D			
GWP-total	kg CO ₂ eq	2.17E+02	3.53E-01	6.04E+00	7.66E+02	0	1.57E-01	8.36E+00	6.4E-02	-1.19E+02			
GWP-fossil	kg CO ₂ eq	2.24E+02	3.38E-01	1.51E-01	7.62E+02	0	1.5E-01	7.01E+00	6.3E-02	-1.18E+02			
GWP-biogenic	kg CO ₂ eq	-7.59E+00	1.6E-02	5.89E+00	2.54E+00	0	7E-03	1.34E+00	2.17E-04	-3.48E-01			
GWP-luluc	kg CO ₂ eq	1.4E-01	8.04E-06	9.94E-05	1.1E+00	0	3.58E-06	4.08E-04	1.83E-04	-2E-02			
ODP	kg CFC11 eq	4.11E-09	3.57E-17	1.09E-15	1.68E-11	0	1.59E-17	3.69E-15	2.35E-16	-8.15E-10			
AP	mol H ⁺ eq	1.01E+00	3.38E-04	2E-03	1.68E+00	0	1.51E-04	1E-03	4.55E-04	-4.59E-01			
EP-freshwater	kg P eq	4.13E-04	7.23E-08	2.13E-07	2E-03	0	3.22E-08	5.87E-07	1.09E-07	-6.35E-05			
EP-marine	kg N eq	1.44E-01	1.08E-04	6.11E-04	3.74E-01	0	4.79E-05	3.44E-04	1.17E-04	-5.8E-02			
EP-terrestrial	mol N eq	1.55E+00	1E-03	8E-03	3.93E+00	0	5.32E-04	7E-03	1E-03	-6.23E-01			
POCP	kg NMVOC eq	4.51E-01	3.04E-04	2E-03	1.02E+00	0	1.35E-04	9.49E-04	3.55E-04	-1.89E-01			
ADPE	kg Sb eq	6.4E-03	1.01E-08	1.72E-08	2.21E-04	0	4.51E-09	5.1E-08	5.7E-09	-3E-03			
ADPF	MJ	2.9E+03	4.79E+00	1.91E+00	1.34E+04	0	2.13E+00	3.53E+00	8.32E-01	-1.64E+03			
WDP	m ³ world eq deprived	3.61E+01	6.62E-04	7.49E-01	1.66E+02	0	2.95E-04	8.56E-01	7E-03	-6.45E+00			

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential)

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 piece ES 200												
Parameter	Unit	A1-A3	A4	A5	B6	C1	C2	C3	C4	D		
PERE	MJ	1.06E+03	1.5E-02	5.15E+01	5.94E+03	0	7E-03	9.9E+00	1.09E-01	-7.04E+02		
PERM	MJ	6.01E+01	0	-5.11E+01	0	0	0	-9E+00	0	0		
PERT	MJ	1.12E+03	1.5E-02	3.47E-01	5.94E+03	0	7E-03	8.97E-01	1.09E-01	-7.04E+02		
PENRE	MJ	2.83E+03	4.8E+00	1.91E+00	1.34E+04	0	2.13E+00	7.69E+01	8.32E-01	-1.64E+03		
PENRM	MJ	7.34E+01	0	0	0	0	0	-7.34E+01	0	0		
PENRT	MJ	2.91E+03	4.8E+00	1.91E+00	1.34E+04	0	2.13E+00	3.53E+00	8.32E-01	-1.64E+03		
SM	kg	3.26E+00	0	0	0	0	0	0	0	0		
RSF	MJ	0	0	0	0	0	0	0	0	0		
NRSF	MJ	0	0	0	0	0	0	0	0	0		
FW	m ³	2.5E+00	2.71E-05	1.8E-02	6.87E+00	0	1.21E-05	2E-02	2.1E-04	-1.27E+00		

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; penergy resources used as raw materials; penergy resources; pener

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 piece ES 200

Parameter	Unit	A1-A3	A4	A5	В6	C1	C2	C3	C4	D
HWD	kg	3.01E-05	4.65E-10	2.81E-09	5.55E-06	0	2.07E-10	1.26E-08	1.27E-08	-1.53E-05
NHWD	kg	4.41E+01	4.9E-04	1.89E-01	9.51E+00	0	2.18E-04	7.36E-01	4.18E+00	-2.64E+01
RWD	kg	1.44E-01	5.15E-06	1E-04	2.03E+00	0	2.29E-06	1.37E-04	9.47E-06	-1.7E-01
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	2.83E+01	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	9.14E+00	0	0	0	1.5E+01	0	0
EET	MJ	0	0	1.66E+01	0	0	0	3.34E+01	0	0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 piece ES 200

Parameter	Unit	A1-A3	A4	A5	B6	C1	C2	C3	C4	D
РМ	Disease incidence	1.05E-05	1.78E-09	9.37E-09	1.41E-05	0	7.91E-10	1.69E-08	5.63E-09	-6.96E-06
IR	kBq U235 eq	2.71E+01	7.36E-04	1.6E-02	3.34E+02	0	3.27E-04	1.3E-02	9.75E-04	-3.4E+01
ETP-fw	CTUe	1.06E+03	3.4E+00	9.05E-01	5.73E+03	0	1.51E+00	1.34E+00	4.75E-01	-5.7E+02
HTP-c	CTUh	2.76E-07	6.39E-11	4.79E-11	1.58E-07	0	2.84E-11	1.14E-10	7.04E-11	-2.45E-08
HTP-nc	CTUh	2.94E-06	2.73E-09	2.07E-09	5.83E-06	0	1.22E-09	1.1E-08	7.76E-09	-9.43E-07
SQP	SQP	1.23E+03	1.2E-02	5.06E-01	4.27E+03	0	5E-03	1.05E+00	1.73E-01	-5.8E+01

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 – for the indicator 'Potential Human exposure efficiency relative to U235'. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear

accidents, occupational exposure or radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators 'abiotic depletion potential for non-fossil resources', 'abiotic depletion potential for fossil resources', 'water (user) deprivation potential, deprivation-weighted water consumption', 'potential comparative toxic unit for ecosystems', 'potential comparative toxic unit for humans –

cancerogenic', 'Potential comparative toxic unit for humans - not cancerogenic', 'potential soil quality index'. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high as there is limited experience with the indicator.

This EPD was created using a software tool.

References

EN 18650

EN 186501: 2010, Powered pedestrian doors Part 1: Product requirements and test methods

EN 18650

EN 186502: 2010, Powered pedestrian doors Part 2: Safety at powered pedestrian doors

EN 16005

EN 16005: 2013-01, Power operated pedestrian doorsets Safety in use - Requirements and test methods

EN 60335

EN 60335-1, -2-103:2020 08, Household and similar electrical appliances - Safety - Part 1: General requirements

EN 61000

EN 61000 -1-2: 2017-07, Electromagnetic compatibility (EMC) - Part 1-2: General Methodology for the achievement of functional safety of electrical and electronic systems including equipment with regard to electromagnetic phenomena

ISO 13849

ISO 138491: 2021-08, Safety of machinery Safety-related parts of control systems - Part 1: General principles for design

Machinery Directive

Directive 2006/42/EC of the European Parliament and of the Council on machinery, and amending Directive 95/16/EC

REACH

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

ROHS3 Directive

Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

Further References

IBU 2021

General Instructions for the EPD programme of Institut Bauen und Umwelt e.V. Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021. www.ibu-epd.com

GaBi

Sphera Solutions GmbH Gabi Software System and Database for Life Cycle Engineering 1992-2020 Version 10.0.0.71 University of Stuttgart Leinfelden-Echterdingen

GaBi ts documentation

GaBi life cycle inventory data documentation (https://www.gabisoftware.com/support/gabi/gabidatabase- 2020-lci-documentation/).

LCA-tool dormakaba

LCA tool, ENS (drive system) LCA-Tool No.: IBU-DOR-202108-LT1-EN Developed by Sphera Solutions GmbH.

PCR Part A

PCR – Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Re-port according to EN 15804+A2:2019, Version 1.0, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

PCR Part B

PCR – Part B: Requirements on the EPD for Building Hardware product, version 1.2, Institut Bauen und Umwelt e.V., www.ibuepd.com, 2020.

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Author of the Life Cycle Assessment

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany +49 2333 793-0 info.de@dormakaba.com www.dormakaba.com

Owner of the Declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany +49 2333 793-0 info.de@dormakaba.com www.dormakaba.com