

TA-COMPACT-T

Kombinierte Einregulier- und Regelventile für kleine Verbraucher

Kompaktregelventil mit Rücklauftemperaturregler für Kühlanlagen

TA-COMPACT-T

TA-COMPACT-T ist ein Auf/Zu Regelventil mit integriertem Rücklauftemperaturregler zur Sicherstellung der Rücklauftemperatur bei z.B. Gebläsekonvektoren in Kühlanlagen. Die stets korrekte Rücklauftemperatur sorgt für eine hohe Effizienz im gesamten System und schützt Kaltwassererzeuger vor zu niedrigen Rücklauftemperaturen. Der hydronische Abgleich aufgrund der Rücklauftemperaturregelung verhindert zu große Durchflüsse und spart Energie. Ein Messnippel ermöglicht die Temperaturmessung.

Hauptmerkmale

 Korrekte Rücklauftemperatur bei z.B. Gebläsekonvektoren in Kühlanlagen

Der eingebaute Rücklauftemperaturregler hält die Rücklauftemperatur auf den eingestellten Wert und sorgt für eine hohe Energie Effizienz bei Kühlanlagen

> Hydronische Einregulierung

Rücklauftemperaturregelung verhindert zu große Durchflüsse

> Messung

Selbstdichtender Messnippel zur Temperaturmessung und Kontrolle

Technische Beschreibung

Anwendungsbereich:

Kühlanlagen mit variablen Durchflüssen. Einbau in den Rücklauf.

Funktionen:

Regelung Rücklauftemperaturregelung Temperaturmessung Absperren

Dimensionen:

DN 15-25

Druckklasse:

PN 16

Max. Differenzdruck (ΔpV):

200 kPa = 2 bar

Einstellbereich:

Rücklauftemperatur: 8°C - 18°C Werkseinstellung 12°C

Temperatur:

Max. Betriebstemperatur: 50 °C Min. Betriebstemperatur: -10 °C

Medien:

Wasser oder neutrale Flüssigkeiten, Wasser-Glykol-Gemische. (Für andere Medien wenden Sie sich bitte an uns.)

Hub:

4 mm

Werkstoffe:

Ventilgehäuse: korrosionsbeständiger

Rotauss

O-Ringe: EPDM

Ventilsitz-Dichtung: EPDM Druckfeder: Edelstahl

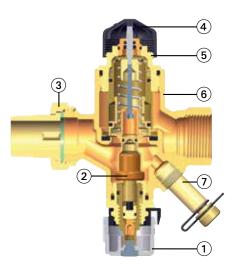
Thermostat-Oberteile: Messing Spindel: Niro-Stahlspindel mit doppelter

O-Ring-Abdichtung. Handrad: ABS

Kennzeichnung:

TAH, PN 16, DN und Durchflussrichtungspfeil. Bauschutzkappe schwarz.

Anschluss für Stellantriebe:


M30x1,5

Stellantriebe:

Siehe separates Datenblatt EMO T.

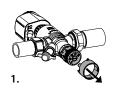
Aufbau

- 1. Einstellhandrad für Rücklauftemperaturregler
- 2. Fühler
- 3. Anschlussverschraubung
- 4. Bauschutzkappe
- 5. Stellantrieb-Anschluss M30x1,5
- 6. Gehäuse aus korrosionsbeständigem Rotguss
- 7. Messnippel zur Temperaturmessung

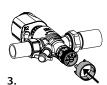
Funktion

TA-COMPACT-T ist ein Auf/Zu Regelventil mit integriertem Rücklauftemperaturregler.

Regeltechnisch betrachtet ist der in TA-COMPACT-T integrierte Rücklauftemperaturregler ein stetiger Proportionalregler (P-Regler) ohne Hilfsenergie. Er benötigt keinen elektrischen Anschluss oder sonstige Fremdenergie.


Die Änderung der Temperatur des durchfließenden Mediums (Regelgröße) ist proportional zur Änderung des Ventilhubes

(Stellgröße) und wird durch Wärmeleitung auf den Fühler übertragen. Sinkt die Rücklauftemperatur so zieht sich der Dehnstoff im Temperaturfühler zusammen und wirkt auf den Membrankolben. Dieser drosselt über die Ventilspindel die Wasserzufuhr zum z.B. Fancoil. Bei steigender Mediumtemperatur verläuft der Vorgang umgekehrt. Das Ventil schließt, wenn der eingestellte Begrenzungswert unterschritten wird.


Einstellung

Die Werkseinstellung des des TA-COMPACT-T Rücklauftemperaturreglers beträgt 12 °C. Andere Rücklauftemperaturen können wie folgt eingestellt werden:

- 1. Ziehen Sie die Verdrehsicherung vom Handrad ab.
- 2. Stellen Sie das Handrad auf die gewünschte Temperatur ein.
- Stecken Sie die Verdrehsicherung wieder auf, bis sie einrastet. Die Verdrehsicherung schützt das Handrad vor unbefugten Änderungen der Einstellung.

Merkzahl	8 *)	10	12 **)	14	16	18
Rücklauftemperatur [°C]	8	10	12	14	16	18

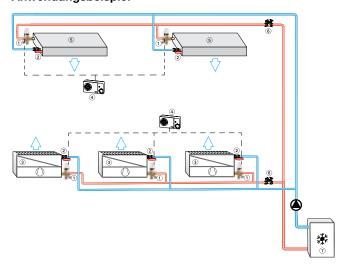
^{*)} Füll- und Spülstellung

^{**)} Werkseinstellung

Dimensionierung

Wenn der erforderliche Druckverlust Δp und die gewünschte Durchflussmenge bekannt sind, kann der Kv-Wert mit der Formel berechnet werden.

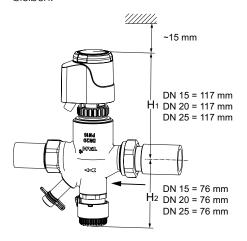
$$Kv = 0.01 \frac{q}{\sqrt{\Delta p}} \qquad q \; l/h, \; \Delta p \; kPa$$


$$Kv = 36 \frac{q}{\sqrt{\Delta p}}$$
 q l/s, Δp kPa

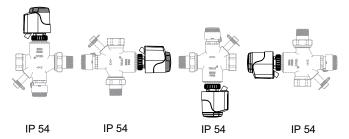
Anwendung

TA-COMPACT-T ist ein Auf/Zu Regelventil mit integriertem Rücklauftemperaturregler zur Sicherstellung der Rücklauftemperatur bei z.B. Gebläsekonvektoren oder Kühldecken in Kühlanlagen. Die stets korrekte Rücklauftemperatur sorgt für eine hohe Effizienz im gesamten System und schützt Kaltwassererzeuger vor zu niedrigen Rücklauftemperaturen (Niedrigtemperatursyndrom). Der hydronische Abgleich aufgrund der Rücklauftemperaturregelung verhindert zu große Durchflüsse und spart Energie.

TA-COMPACT-T ist dadurch auch die ideale Lösung für die Sanierung bestehender Anlagen. Ein Messnippel zur Temperaturmessung ermöglicht jederzeit die Kontrolle der Rücklauftemperatur.


Anwendungsbeispiel

- 1. TA -COMPACT-T + EMO T
- 2. Globo H Kugelhahn
- 3. Gebläsekonvektor (Fancoil)
- 4. Thermostat P
- 5. Kühldecke
- 6. STAD Strangregulierventil
- 7. Kaltwassererzeuger


Installation des Stellantriebs

Über dem Stellantrieb muss ein Freiraum von ca. 15 mm bleiben.

TA-COMPACT-T + EMO T

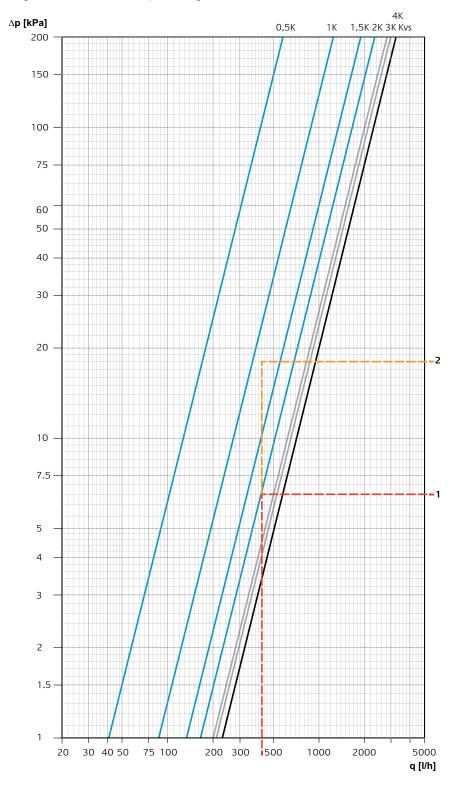

Max. Δp 200 kPa = 2 bar (EMO T 125 N)

Diagramm TA-COMPACT-T, DN 15

Regeldifferenz Rücklauftemperaturregler

Berechnungsbeispiel 1

Gesucht:

Druckverlust TA-COMPACT-T DN 15 bei 2 K Regeldifferenz

Gegeben:

Durchfluss q = 420 l/h

Lösung:

Druckverlust aus Diagramm:

 Δ pV = 6,5 kPa

Berechnungsbeispiel 2

Gesucht:

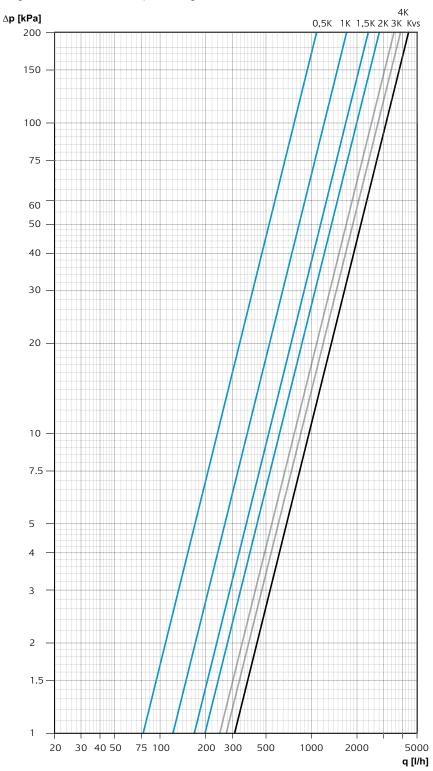
Regeldifferenz

Gegeben:

Durchfluss q = 420 l/h Druckverlust TA-COMPACT-T

 $\Delta pV = 18 \text{ kPa}$

Lösung:

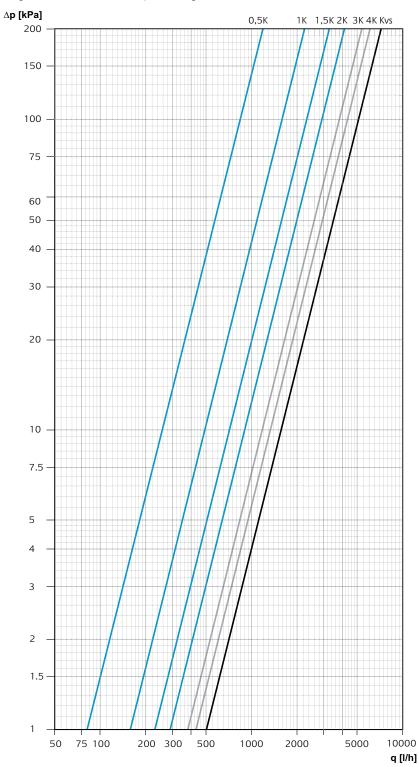

Regeldifferenz aus Diagramm: ≈ 1,2 K

Regeldifferenz [K]	0,5	1	1,5	2	3	4	Kvs
Kv	0,41	0,87	1,33	1,65	2,00	2,09	2,27

Kv/Kvs = m³/h bei einem Druckverlust von 1 bar. Empfohlene Regeldifferenz min. 0,5 K bis max. 2 K.

Diagramm TA-COMPACT-T, DN 20

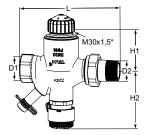
Regeldifferenz Rücklauftemperaturregler


Regeldifferenz [K]	0,5	1	1,5	2	3	4	Kvs
Kv	0,76	1,22	1,68	1,98	2,44	2,74	3,10

 $Kv/Kvs = m^3/h$ bei einem Druckverlust von 1 bar. Empfohlene Regeldifferenz min. 0,5 K bis max. 2 K.

Diagramm TA-COMPACT-T, DN 25

Regeldifferenz Rücklauftemperaturregler



Regeldifferenz [K]	0,5	1	1,5	2	3	4	Kvs
Kv	0,82	1,58	2,28	2,91	3,80	4,30	5,06

 $\label{eq:Kv/Kvs} Kv/Kvs = m^3/h \mbox{ bei einem Druckverlust von 1 bar.}$ $\mbox{Empfohlene Regeldifferenz min. 0,5 K bis max. 2 K.}$

7

Artikel

Innengewinde x Verschraubung, Außengewinde

Gewinde nach DIN EN 10226-1.

DN	D1	D2	L	H1	H2	Kvs	Kg	EAN	Artikel-Nr.
15	Rp1/2	R1/2	112	52	72	2,27	0,73	5901688827635	4221-02.000
20	Rp3/4	R3/4	123	52	72	3,10	0,89	5901688827642	4221-03.000
25	Rp1	R1	140	52	72	5,06	1,23	5901688827659	4221-04.000

*) Gewinde für Stellantrieb.

Maß H1 bei Auflagefläche Stellantrieb.

Kvs = m³/h bei einem Druckverlust von 1 bar und voll geöffnetem Ventil.

Zubehör

Klemmverschraubung

für Kupfer- oder Präzisionsstahlrohr nach DIN EN 1057/10305-1/2.

Anschluss Innengewinde Rp1/2 – Rp3/4. Metallisch dichtend.

Messing vernickelt.

Bei einer Rohrwanddicke von 0,8 – 1 mm sind Stützhülsen einzusetzen. Angaben der Rohrhersteller beachten.

Ø Rohr	DN	EAN	Artikel-Nr.
15	15 (1/2")	4024052175017	2201-15.351
16	15 (1/2")	4024052175116	2201-16.351
18	20 (3/4")	4024052175215	2201-18.351

Stützhülse

für Kupfer- oder Präzisionsstahlrohr mit einer Wandstärke von 1 mm. Messing.

Ø Rohr	L	EAN	Artikel-Nr.
15	26,0	4024052127917	1300-15.170
16	26,3	4024052128419	1300-16.170
18	26,8	4024052128815	1300-18.170

Thermischer Stellantrieb EMO T

Für mehr Informationen, siehe separates Datenblatt EMO T.

Das TA-COMPACT-T wurde entwickelt um zusammen mit dem stetigen thermischen Stellantrieb EMO T eingesetzt zu werden. Antriebe anderer Hersteller müssen ein Schliessmaß von 11,5 mm und 4,3 mm Hub sowie eine Stellkraft von 125 N gewährleisten.

X (geschlossen - voll geöffnet) = 11,6 - 15,6

IMI Hydronic Engineering kann aber keine Gewährleistung für die korrekte Regelfunktion übernehmen, falls Stellantriebe anderer Hersteller eingesetzt werden.

