Produkte und Anwendung

Einregulierung, Regelung, Stellantriebe Druckhaltung und Wasserqualität

IMI PNEUMATEX

111 JAHRE ERFAHRUNG

Druckunabh	ängi	ige	
Einregulier-	und	Rege	lventil

IA-Modulator	8
TA-COMPACT-P	8
TA-FUSION-P	8
KTM 512	8

Kombinierte Einregulierund Regelventile TBV-C 10

•	_	-	_					•••	••••		•••	•••	 	•••	٠	~
T	В	V-	С	M											1	0
T	Ά	-C	0	M	P	Α	С	Т	-1	Γ.			 		1	0

Regelventile
CV216/316 MZ11
CV216/316 RGA12
CV206/216 GG12
CV306/316 GG12
TA-6-WEGE VENTIL 12
CV240/340 S/E12
CV216/31612
CV225/325 12
BR12WT12

Stellantriebe für Einregulier- und Regelventile

TA-Slider 500	19
TA-Slider 160	19
TA-Slider 750	19
TA-Slider 1250	19
EMO T	19
EMO TM	19
EMO 3	20
TA-MC15-C	20
TA-MC50-C	20

Stellantriebe für Standardregelventile

· ·	
TA-MC55	.20
TA-MC65	.20
TA-MC100	.20
TA-MC55	.23
TA-MC65	.23
TA-MC100	.23
TA-MC100 FSE/FSR.	.23
TA-MC160	.24
TA-MC161	
TA-MC250	.24
TA-MC400	.24
TA-MC500	.24
TA-MC1000	
TA-Slider 750	.24
TA-Slider 1250	.24

TEIL B

Einregulierventile TBV......27 STAD27 STAD-C.....27 STAD-R.....28 STAD-D.....28 STAF, STAF-SG28 STAF-R.....28 STAG28

TA-BVS 240/24328

	q
B2	- [
	l

Messblenden	
MDF029	9

Regulierventile STK.....30

Differenzdruckregler	
STAP DN 15-50	32
DA 516	32
DAF 516	32
TA-PILOT-R	32
TA-COMPACT-DP	32
STAP DN 65-100	32

Überströmventile	
BPV3	3
Hydrolux3	3
DAB 503	3
PM 512 3	3

TEIL C

е
38
38
38

Automatische

Sicherheitsventile Sicherheitsventil42

TEIL D

Entlüfter, Schmutzabscheider und Entgasung

Zeparo ZUT, ZUTS	45
Zeparo ZUV, ZUVS	45
Zeparo Cyclone	45
Ferro Cleaner	45
Zeparo G-Force	45
Zeparo ZIO	45
Vento EcoEfficient	45
Vento Connect V, VI	45

Druckhalteüberwachun und Nachspeisesystem
Pleno PX47
Pleno PIX Connect47
Pleno PI 9F Connect 47
Pleno PI 9.1 Connect . 47
Pleno PI 9.2 Connect.47
Pleno Refill47

TEIL E

		_
Einregulierungsc	omput	er
TA-SCOPE		51
Differenzdruck-M	essfüh	ıler
TA Link		51
Software		
HySelect		52
HyTools		52
IMI Hecos		53

HyTune53

TEIL F

Druckunabhängige Einregulier- und Regelventile...... 56 (F2) Kombinierte Einregulier- und Regelventile.....58 (F3) Einregulier- und Standardregelventile......60 (F4) Heizköperthermostatventile mit Voreinstellung........... 62 (F5) AFC-Technologie (Automatische Durchflussregelung) 64 Einregulier- und Standardregelventile......66

EXTRA

Druckunabhängige Einregulier- und Regelventile......68 F8 Kombinierte Einregulier- und Regelventile......70 **F9** Einregulier- und Standardregelventile......72 (F10) Regelventile mit Rücklauftemperatur-Regler.....74 (F11) (F12) Automatische hydraulische Entkoppelungsschaltung bei variablen Durchflüssen. 78 (F13) Zonenregelung (z.B. Heizen in Appartments) 80

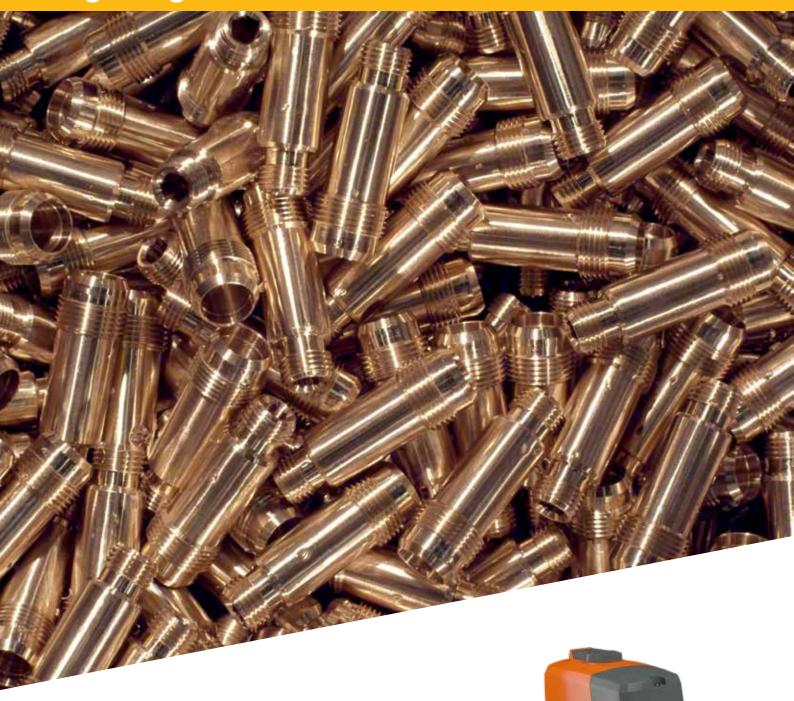
4-Leiter Heiz- und Kühlsystem 82

A Regelung	Einleitung
B Einregulierung	Einleitung
C Druckhaltung	Einleitung
D Wasserqualität	Einleitung43 Luft- und Schmutzabscheider; Druckstufen – Vakuumentgaser44 Druckhalteüberwachung und Nachspeisesysteme46
Messwerkzeuge & Software	Einleitung
F Anwendungen	Einleitung .55 Heizsystem .56 variabler Durchfluss .66 Kühlsystem .68 variabler Durchfluss .68 konstanter Durchfluss .76 Extra – variabler Durchfluss .78 4-Leiter Heiz- und Kühlsystem – variabler Durchfluss .82

IMI TA: Einregulierung, Regelung und Stellantriebe

Lösungen, die Ihnen jederzeit die volle Kontrolle ermöglichen

Bei IMI TA ist es unser Ziel, Sie dabei zu unterstützen, ein komfortables, optimiertes und energieeffizientes Raumklima mit minimalen Betriebskosten zu erreichen. Dazu sind hervorragende technische Lösungen und umfangreiches Wissen notwendig. Aus diesem Grund ergänzen wir unser Produktangebot mit der Unterstützung durch Experten. Wir stehen Ihnen während der gesamten Projektlaufzeit zur Seite und bieten Ihnen technische Schulungen und Seminare an, die Ihnen dabei helfen, optimale Systeme zu planen und zu realisieren.


Eckdaten zur Marke

Seit der Gründung im Jahr 1897 im schwedischen Ljung hat IMI TA ein umfassendes Sortiment an qualitativ hochwertigen Einregulierungs- und Regelungsprodukten entwickelt, die optimale Leistung und maximale Energieeffizienz liefern und dazu beitragen, stabile und langlebige HLK-Anlagen zu installieren.

	2017	Das bekannte Messinstrument TA-SCOPE erhält ein Update mit DpS-Visio und bietet jetzt eine noch einfachere und genauere Messung und Einregulierung.
	2016	TA-Slider, unser digital konfigurierbarer Stellantrieb - mit oder ohne BUS-Kommunikation - kommt auf den Markt.
	2015	TA-Modulator, unser hochpräzises, druckunabhängiges Regel- und Regulierventil zur stetigen Regelung, wird eingeführt.
100	2008	IMI TA feiert den 100.000 . Projektauftrag
IMI TA	1997	IMI erwirbt TA, daraus entsteht die Produktmarke Marke IMI TA.
TA	1977	AHA und Tour Agenturer fusionieren zu Tour & Andersson AB (TA).
1	1957	TA bringt das weltweit erste manuelle Einregulierventil heraus.
	1897	August Hilmer Andersson (AHA) beginnt im schwedischen Ljung mit der Herstellung von Wasser- und Heizungsarmaturen.

Regelung

PRO JAHR ÜBER 4 MILLIONEN GRÜNDE ZU MESSEN

HOCHPRÄZISE HYDRONISCHE REGELUNG MIT MESS- UND DIAGNOSEFUNKTION

TA-Modulator mit TA-Slider 160

TA-Modulator mit TA-Slider 500

TA-Modulator mit **TA-Slider 750**

Die bestmögliche Energieeffizienz lässt sich nur erreichen, wenn alle Prozesse innerhalb des Systems messbar und transparent sind. Echte Systemparameter und auch mögliche Systemausfälle lassen sich nur durch präzise und verlässliche Messverfahren feststellen. Daher sind alle unsere kombinierten Einregulier- und Regelventile mit Messnippeln ausgestattet, mit denen Sie Durchfluss, Druckverlust, Temperatur und sogar die tatsächliche Leistung messen können. Patentierte Eigenschaften wie der vollständig einstellbare Kv-Wert, Spülung, die Möglichkeit zur Messung zusätzlicher Pumpenförderhöhe unterscheiden unsere Produkte von anderen am Markt erhältlichen. Der neue TA-Slider ist der flexibelste Stellantrieb auf dem Markt und der einzige, der die letzten 10 Fehler zur schnelleren Fehlererkennung aufzeichnet.

REGULIERVENTILE UND STELLANTRIEBE

	A1 🔆	Druckunabhängige Einregulier- und Regelventile	7
Ventile	A2 0	Kombinierte Einregulier- und Regelventile	9
	A3 💍	Standardregelventile	11
Stellantriebe	A4 💮	Stellantriebe für kombinierte Einregulier- und Regelventile	17
Stellalitriebe	A5 (\$)	Stellantriebe für Standardregelventile	21

Druckunabhängige Einregulier- und Regelventile

5 in 1 Konzept

Druckunabhängige Einregulier- und Regelventile sind die ideale Lösung für moderne Heiz- und Kühlanlagen, da sie nur geringe Betriebskosten mit sich bringen und sich schnell und einfach installieren lassen. Die Ventile ermöglichen dank des integrierten Differenzdruckreglers, der über das Regelteil den Differenzdruck konstant hält, unter sämtlichen Arbeitsbedingungen eine stabile und präzise Temperaturregelung. Vollständig geöffnete Ventile begrenzen den maximalen Durchfluss und gewährleisten die hydraulische Einregulierung.

Unsere Ventile sind auf dem Markt einzigartig, daher profitieren Sie von ausgezeichneten Diagnose- und Messfunktionen, die Sie beim Einstellen des Arbeitspunkts von Pumpen, beim Erzielen maximaler Energieeinsparung und dem Ermitteln möglicher Systemfehler unterstützen.

IHRE VORTEILE

- 5 in 1: Regelung + Einregulierung + Diagnose + Dp-Regelung + Absperrung
- Die besten Diagnosemöglichkeiten auf dem Markt
- Geringer Druckverlust, energieeffizienter und ruhiger Betrieb
- Hochwertig und langlebig

WICHTIGE TECHNISCHE PARAMETER

A1	Druckunabhängige Einregulier- und	PN	Mind. Temp.	Max. Temp.	Max. Dp	Regel-	Dimensionen												
A	Regelventile	bar	°C	°C	bar	charakte- ristik	10	15	20	25	32	40	50	65	80	100	125	150	200
	TA-COMPACT-P	16	-10	90	4	LIN	✓	/	/	/	/								
	TA-Modulator	16	-10/-20	90/120	4/6	EQM		✓	✓	/	/	✓	✓						
	TA-Modulator	16/25	-20	120	8	EQM								✓	/	✓	✓	✓	
	TA-FUSION-P	16/25	-20	120/150	8	EQM												/	
	KTM 512	16/25	-10	120/150	16	EQM		/	/	/	/	✓	√	/	√	/	/		

FUNKTIONEN

	Druckunabhängige	Regelung	Max.	Differenz-	Absperrung	Spülung	Messung								
A1	Einregulier- und Regelventile	riogeranig	Durchfluss Vorein- stellung	druck- regelung			Durchfluss	Druckver- lust	Temperatur	Verfügbarer Differenz- druck	Leistung				
	TA-Modulator	/	✓	✓	/	DN 40-80	/	✓	✓	✓	/				
	TA-COMPACT-P	/	✓	✓	/		✓	✓	✓	✓	✓				
	TA-FUSION-P	/	/	/	/	✓	/	✓	/	/	/				
	KTM 512	/	/	✓	/		/	✓	/		✓				

TA-Modulator

Erweiterte Baugrößen

- Durchflussbereich bis zu 190 m³/h
- Die perfekte Lösung zur präzisen Temperaturregelung mit stetigen Stellantrieben
- 6-fach größerer Hub im Teillastbereich als bei Ventilen mit linearer Kennlinie
- Einzigartige EQM-Charakteristik (Patent angemeldet)
- Passende Stellantriebe: TA-Slider 160, TA-Slider 500, TA-Slider 750, TA-Slider 1250 und TA-MC160 (DN 150: Adapter im Lieferumfang des Ventils inklusive)
- Ermöglicht vollständige Systemdiagnose und Durchflussmessung

Geeignete Stellantriebe auf Seite 18

TA-COMPACT-P

- Durchflussbereich bis zu 3,7 m³/h
- · Sehr kompaktes, schlankes und praktisches Ventil für kleine Verbraucher
- Einfache Bedienung aller Funktionen von einer Seite
- Stellantriebanschluss M30x1,5
- Ermöglicht vollständige Systemdiagnose
- Lineare Charakteristik, am besten für On/Off-Regelung geeignet
- Hergestellt aus der patentierten Legierung AMETAL®

Geeignete Stellantriebe auf Seite 18

TA-FUSION-P

- Durchflussbereich bis zu 207 m³/h
- Perfekte Lösung zur stetigen Regelung in HLK-Systemen
- Umfassende Auswahl an Stellantrieben
- Ermöglicht vollständige Systemdiagnose
- Einzigartige Spülfunktion (Möglichkeit zur Abschaltung des Dp-Reglers)

Geeignete Stellantriebe auf Seite 18

KTM 512

- Durchflussbereich bis zu 66,8 m3/h
- Ideale Regelventile zur stetigen Regelung in Fernwärmeanlagen
- Umfassende Auswahl an Stellantrieben und Adaptern
- Hohe Korrosionsbeständigkeit

Geeignete Stellantriebe auf Seite 18

Siehe Anwendungen

Kombinierte Einregulierund Regelventile

A2	Kombinierte Einregulier- und Regelventile	PN	Min. Temp.	Max. Temp.	Max. Dp	Regel- charak-												
AZ	und Regelventile	bar	°C	°C	bar	teristik	10	15	20	25	32	40	50	65	80	100	125	150
	TBV-C	16	-20	120	9,71	LIN ³		V	V	\								
	TBV-CM	16	-20	120	9,71	EQM		V	V	\								
	TA-COMPACT-T ²	16	-10	50	2	LIN		/	√	/								

- Je nach DN und Art des Stellantriebs Nur für Kühlsysteme Ideal zur On/Off-Regelung

FUNKTIONEN

	.,		Regelung		17		Messung								
A2	Kombinierte Einregulier- und Regelventile	On/Off- Regelung	3-Punkt- Regelung	Stetige Regelung	Kv Wert(e) einstellbar	Absperrung	Durchfluss	Druckverlust	Temperatur	Verfügbarer Differenz- druck	Leistung				
	TBV-C	✓			✓	✓	✓	/	✓	✓	✓				
	TBV-CM		✓	✓	✓	✓	✓	✓	✓	✓	✓				
	TA-COMPACT-T	✓			4	✓			✓						

⁴ Einstellung der geforderten Rücklauftemperatur zwischen 8 und 18 °C, Werkseinstellung 12 °C

4-in-1Konzept

Kombinierte IMI TA-Einregulier- und Regelventile besitzen die gleichen Vorteile anderer Regel- und Einregulierventile, nur dass sie in einer Einheit zusammengefasst sind. Somit sind viel weniger Ventile erforderlich und auch Dauer und Kosten der Installation sinken. Alle unsere kombinierten Einregulier- und Regelventile sind mit Messnippeln ausgestattet, die umfassende Diagnosefunktionen für die hydraulische Einregulierung und eine einfache Inbetriebnahme bieten. Ein breites Angebot an Regeleigenschaften und Stellantrieben ermöglichen eine einzigartige Auswahl für unterschiedliche Anwendungen.

IHRE VORTEILE

- 4 in 1: Regelung + Einregulierung + Diagnose + Absperrung
- Schnellere und günstigere Installation
- Stetige, 3-Punkte- oder On/Off-Regelung möglich
- Hohe Energieeffizienz und verringerter Pumpenenergiebedarf

TBV-C

- Ideales Ventil zur On/Off-Regelung kleiner Verbraucher
- Stellantriebanschluss M30x1,5
- Förderung unabhängig von der Kv-Voreinstellung
- Besteht aus der patentierten Legierung AMETAL®

Geeignete Stellantriebe auf Seite 18

TBV-CM

- EQM-Charakteristik f
 ür pr
 äzise stetige Regelung
- Förderung unabhängig von der Kv-Voreinstellung
- Stellantriebanschluss M30x1,5
- Besteht aus der patentierten Legierung AMETAL®

Geeignete Stellantriebe auf Seite 18

TA-COMPACT-T

- Das einzige On/Off-Regelventil auf dem Markt mit eingebautem Rücklauftemperatur-Regler
- Nur für Kühlsysteme, ideale Lösung für Sanierungen
- Garantiert die angeforderte Rücklauftemperatur an den Verbrauchern
- Begrenzt durch die Regelung der Rücklauftemperatur einen zu hohen Durchfluss
- On/Off-Regelventil zur Durchflussmodulierung senkt erheblich den Pumpenenergieverbrauch
- Verbessert die Energieeffizienz des gesamten Kühlsystems

Geeignete Stellantriebe auf Seite 18

Siehe Anwendungen (

Standardregelventile

WICHTIGE TECHNISCHE PARAMETER

	A3 Standardregelventile		Min. Temp.	Max. Temp.	Max. Dp	Regel- charak-													
	Standardregerventile	bar	°C	°C	bar	teristik	15	20	25	32	40	50	65	80	100	125	150	200	300
	CV216/316 MZ	16	0	120	0,61	EQM/ EQM-LIN ²	√	√	V										
HVAC	CV216/316 RGA	16	0 (-15)	150	1,61	EQM/ EQM-LIN ²	/	✓	/	/	V	✓							
	CV206/216 GG, CV306/316 GG	6/16	0 (-10)	150	1,6¹	EQM/ EQM-LIN ²	✓	V	/	√	√	/	√	V	✓	✓	✓		
	TA-6-Wege-Ventil	16	-10	120	2	LINEAR	✓	V											
	CV216/316	16	0 (-301)	180 (350) ³	1,6¹	EQM/ EQM-LIN ²										/	/	/	✓
RIELL	CV225/325	16/25/40	0 (-301)	180 (350) ³	4,01	EQM/ EQM-LIN ²	√	√	/	/	√	✓	√	√	✓	✓	/	✓	
INDUSTRIELL	CV240/340 S/E	16/25/40	0 (-30¹)	180 (350) ³	4,01	EQM/ EQM-LIN ²	/	✓	/	/	✓	/	✓	✓	/	/	/	/	✓
	BR12WT	6/16	-10	110	12 ⁶	N/A			/	/	√	✓	√	V	/	/	/	✓	

- Je nach DN und Art des Stellantriebs
- 3-Wege-Regelventile, EOM in Richtung A-AB, LIN in Richtung B-AB Höhere Temperatur mit Sonderzubehör verfügbar
- Auf Anfrage Weitere Informationen siehe www.imi-hydronic.de, www.imi-hydronic.at, www.imi-hydronic.ch Zusammen mit TA-Modulator

CV2xx = 2-Durchgangsventil CV3xx = 3-Wege-Ventile

Umfassendes Sortiment von einem Lieferanten

Das Produktportfolio an HLK-Regelventilen umfasst elektrisch betriebene Regelventile aus Messing, Rotguss und Stahlguss sowie elektrisch betriebene Absperrklappen. Sämtliche Standardregelventile sind mit unseren langlebigen und flexiblen MC Hub-Stellantrieben ausgestattet. Die Absperrklappen arbeiten mit den bewährten Schwenkantrieben der M-Serie. Industrielle Regelventile gewährleisten in Millionen von Varianten, die für ihre

jeweiligen Anwendungszwecke optimiert wurden, höchste Qualität und Langlebigkeit. Unsere standardisierten, elektrisch betriebenen Industrieventile decken Druckstufen bis zu PN 40, Temperaturen bis zu 400° C sowie Nenngrößen bis zu DN 300 ab.

Sortiment an Stellantrieben zur stetigen, 3-Punkt-, PWM- und On/ Off- Regelung sind in allen Spannungsvarianten entweder als thermische oder motorische Antriebe erhältlich.

CV216/316 MZ

- Kv-Wert-Bereich: 2-Wege: 0,25-8,0, 3-Wege: 0,16-6,3
- Kompaktes Ventil zur 3-Punkt- oder stetigen Regelung kleiner Verbraucher
- Automatische Kupplung zwischen Spindel und Stellantrieb für 100% Zug- und Schubkraft
- Außengewinde zum schnellen und einfachen Anschluss

Geeignete Stellantriebe auf Seite 21

CV216/316 RGA

- Kv-Wert-Bereich: 0,63 40
- Ideales Ventil zur 3-Punkt- oder stetigen Regelung mittelgroßer HLK-Anwendungen
- Umfassendes Stellantrieb-Programm für unterschiedliche Schließdruckwerte und Laufzeiten
- Anschlussteile im Lieferumfang
- Große Auswahl an Zubehör, siliziumfreie Version verfügbar

Geeignete Stellantriebe auf Seite 21

CV206/216 GG, CV306/316 GG

- Kv-Wert-Bereich: 0,63 315
- Ideales Ventil zur 3-Punkt- oder stetigen Regelung mittelgroßer HLK-Anwendungen
- Umfassendes Stellantrieb-Programm für unterschiedliche Schließdruckwerte und Laufzeiten
- Anschlussteile im Lieferumfang
- Große Auswahl an Zubehör, siliziumfreie Version verfügbar

Geeignete Stellantriebe auf Seite 21

TA-6-WEGE VENTIL

- Kvs: 1,25, 2,80 oder 4,0 je nach Typ und Größe
- TA-6-Wege-Ventil für Change-Over-Systeme
- Ideale Kombination mit TA-Modulator und TA-Slider 160 CO
- Umfangreiches Zubehörprogramm

Geeignete Stellantriebe auf Seite 21

CV240/340 S/E

- Kv-Wert-Bereich: 0,16 1250, besondere Kv-Werte verfügbar
- Version S: aus Stahlguss
- Version E: aus Edelstahl
- Umfassende Auswahl an Stellantrieben und Zubehör
- Für besondere Fördermedien auf Anfrage

Geeignete Stellantriebe auf Seite 21

CV216/316, CV225/325

- Kv-Wert-Bereich: 2,5 1 250, besondere Kv-Werte verfügbar
- In der Gebäude- und Verfahrenstechnik für besondere Fördermedien geeignet
- 3-Wege-Version kann als Mischventil oder Verteilventil eingesetzt werden
- Verschiedene Materialien für unterschiedliche Temperatur- und Druckbedingungen

Geeignete Stellantriebe auf Seite 21

BR12WT

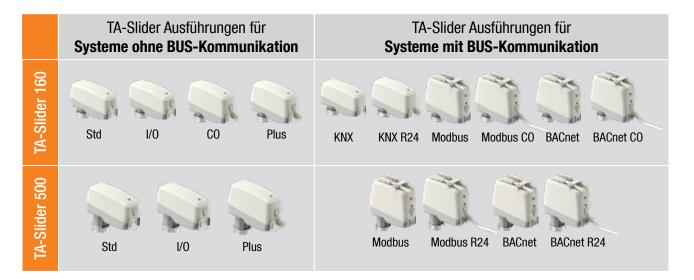
- Einfache Montage durch Befestigungsaugen
- Zentrierte Klappe
- Handbetrieb durch Handhebel
- Anzeige der Drehrichtung
- Klappe und EPDM-Dichtung für einen weiten Einsatzbereich

Geeignete Stellantriebe auf Seite 21

Siehe Anwendungen

TA-Slider

Digital konfigurierbare Stellantriebe


TA-Slider ist der universellste und flexibelste Stellantrieb für moderne HLK-Anlagen und voll kompatibel mit allen Regelungssystemen mit oder ohne BUS-System. Neueste integrierte Technologien ermöglichen eine vollständig digitale Konfiguration via Smartphone. Zum ersten Mal sind Stellantriebe auch in Regelungssystemen ohne Busanbindung universell konfigurierbar.

Die moderne Konfigurationsweise ist komfortabel und intuitiv. Sie erleichtert wesentlich das Anpassen aller Stellantriebparameter an die Anforderungen der Gebäudeleittechnik.

IHRE VORTEILE

- Reduktion der Inbetriebnahmezeit um bis zu 50%
- Flexibel in der Installation, geeignet auch für ungewöhnliche Positionierung
- Reduzierte Produktkomplexität
- Speichert die letzten 10 Fehler zur einfacheren Fehlersuche

FÜR REGELVENTILE VON DN 10 BIS DN 50

10 Fehler

HAUPTMERKMALE

Benutzerfreundlich:

Rot-Blau LED-Anzeige

für Heiz-/Kühlmodus in Change-Over-Systemen und violette LED zur Anzeige von Fehlern

Vollständig digital konfigurierbar:

- Eingangssignal, auch Split-Range
- Ausgangssignal
- Regelcharakteristik
- Kalibrierungsmodi
- \bullet Hubbegrenzung zur Einstellung von $\mathrm{Kv}_{\mathrm{max}}$ oder max. Durchfluss
- Ventilblockierschutz
- Sicherheitsstellung
- Drahtbrucherkennung

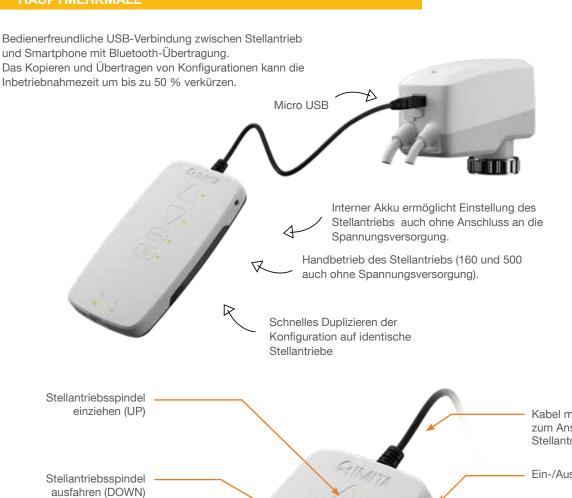
Zusatzfunktionen der "Plus"-Version (2 Kabel)

- + einstellbares VDC-Ausgangssignal
- + konfigurierbarer Binäreingang
- + konfigurierbarer Relais (Schalter)

FÜR REGELVENTILE VON DN 32 BIS DN 200

Zusatzfunktionen der "Plus"-Version:

- + mA-Ausgangssignal (Standard ist VDC)
- + Programmierbarer Binäreingang
- + 2 konfigurierbare Relais
- + optionale BUS-Kommunikationsplatinen



TA-Dongle

Konfiguration und Steuerung aus der Ferne von TA-Slider mit und ohne BUS-Kommunikation

HAUPTMERKMALE

HyTune

App zur Konfiguration und Steuerung der TA-Slider mit Hilfe des TA-Dongle

VORTEILE

- Einfache und intuitive Bedienung.
- Ermöglicht die Konfiguration auch unter schlechten Sichtbedingen auf Baustellen.
- Zusätzlicher Schutz vor menschlichen Fehlern.
- Abrufen der letzten 10 Fehler sowie der Betriebsstatistiken.

Für Smartphones mit iOS ab Version 5 und Android ab Version 4.3.

Übersicht über aktuelle Betriebszustände

Stellantriebe für Einregulier- und Regelventile

WICHTIGE TECHNISCHE PARAMETER

Stellantriebe für Einregulier- und Regelventile	FUNKTIONSPRINZIP	REGELUNGS- ART	BETRIEBS- SPANNUNG [V]	EINGANGSSI- GNAL	AUSGANGS- SIGNAL	HUB [mm]	PASSENDE REGELVENTILE
TA-Slider 160 (optional I/O, CO, Plus)	ELEKTRO- MOTORISCH	STETIG	24 VAC/VDC	0(2)-10VDC frei konfigurierbar ²	0(2) -10 VDC	6.9	TBV-CM, TA-Modulator, TA-COMPACT-P
TA-Slider 160 BACnet, Modbus KNX (optional KNX R24, Modbus CO, BACnet CO)	ELEKTRO- MOTORISCH	STETIG	BUS	BUS	BUS	6.9	TBV-CM, TA-Modulator, TA-COMPACT-P
TA-Slider 500 (optional I/O, Plus)	ELEKTRO- MOTORISCH	STETIG	24 VAC/VDC	0(2)-10VDC frei konfigurierbar ²	0(2)-10 VDC	16,2	TA-Modulator DN 40-50, KTM 512 DN 15-50
TA-Slider 500 Modbus (optional Modbus R24, BACnet R24)	ELEKTRO- MOTORISCH	STETIG	BUS	BUS	über BUS	16,2	TA-Modulator DN 40-50, KTM 512 DN 15-50
TA-Slider 750 (optional BACnet, Modbus)	ELEKTRO- MOTORISCH	STETIG	24 VAC/VDC, 230 VAC	0(2)-10 VDC, 0(4)- 20 mA, 3-PUNKT, on-off ³	0(2)-10 VDC, 0(4)-20 mA	20	KTM 512 DN 65-125 ¹ , TA-Modulator DN 65-80
TA-Slider 1250 (optional BACnet, Modbus)	ELEKTRO- MOTORISCH	STETIG	24 VAC/VDC, 230 VAC	0(2)-10 VDC, 0(4)- 20 mA, 3-PUNKT, on-off ³	0(2)-10 VDC, 0(4)-20 mA	20	TA-FUSION-P DN 150, KTM 65-125 ¹ , TA- -Modulator DN 100-125
ЕМО Т	THERMOELEKT- RISCH	ON-OFF/PWM	24 VAC/VDC, 230 VAC	ON-OFF	-	4,7	TBV-C, TBV-CM, TA-Modulator DN 15-20, TA-COMPACT-T, TA-COMPACT-P
ЕМО ТМ	THERMOELEKTRISCH	STETIG	24 VAC	0-10 / 10-0 / 2-10 / 10-2 VDC	-	4,7	TBV-CM, TA-Modulator DN 15-20
EMO 3/24	ELEKTRO- MOTORISCH	3-PUNKT	24 VAC	3-PUNKT	-	4,5	TBV-CM, TA-Modulator DN 15-20, TA-COMPACT-P
EMO 3/230	ELEKTRO- MOTORISCH	3-PUNKT	230 VAC	3-PUNKT	-	4,5	TBV-C, TBV-CM, TA-Modulator DN 15-20, TA-COMPACT-P
TA-MC15/24-C	ELEKTRO- MOTORISCH	STETIG/ 3-PUNKT	24 VAC/VDC	0(2)-10 VDC, 3-PUNKT	-	4,8	TBV-C, TBV-CM, TA-Modulator DN 15-20, TA-COMPACT-P
TA-MC15/230-C	ELEKTRO- MOTORISCH	3-PUNKT	230 VAC	3-PUNKT	-	4,8	TBV-C, TBV-CM, TA-Modulator DN 15-20, TA-COMPACT-P
TA-MC50/24-C	ELEKTRO- MOTORISCH	STETIG/ 3-PUNKT	24 VAC/VDC	0(2)-10 VDC, 3-PUNKT	-	10	KTM 512 DN 15-50
TA-MC50/230-C	ELEKTRO- MOTORISCH	3-PUNKT	230 VAC	230V	-	10	KTM 512 DN 15-50
TA-MC55	ELEKTRO- MOTORISCH	STETIG 3-PUNKT	24 VAC/VDC, 230 VAC	0(2)-10 VDC, 3-PUNKT	0(2)-10 VDC	20	KTM 512 DN 15-80 TA-Modulator DN 65-80
TA-MC100	ELEKTRO- MOTORISCH	STETIG 3-PUNKT	24 VAC/VDC, 230 VAC	0(2)-10 VDC, 3-PUNKT	0(2)-10 VDC	20	KTM 512 DN 15- 125 TA-Modulator DN 65-100

¹ Für KTM 512 DN 65-125 sind je nach dem maximalen statischen Eingangsdruck im System ggf. andere Stellantriebe erforderlich. Weitere Informationen sind in der vollständigen Auswahltabelle im KTM 512-Datenblatt angeführt.

² Auch 2-10 oder 10-2, Split-Range: 0-5, 5-0, 5-10 oder 10-5 / 0-4,5, 4,5-0, 5,5-10 oder 10-5,5/ 2-6, 6-2, 6-10 oder 10-6 VDC.

³ Auch invers 2-10 bzw. 10-2 VDC / 4-20 oder 20-4 mA und Split-Range: 0-5, 5-0, 5-10 oder 10-5 / 0-4,5, 4,5-0, 5,5-10 oder 10-5,5/ 2-6, 6-2, 6-10 oder 10-6 VDC, 0-10, 10-0, 10-20, 20-10 / 4-12, 12-4, 12-20, 20-12 mA.

EMPFOHLENE VENTIL - STELLANTRIEBSKOMBINATIONEN

Stellantriebe für	TBV-C	TBV-CM			TA-Moo	dulator		TA-COMPACT-T	TA-COMPACT-P	KTM 512	TA-FUSION-P	
Einregulier- und Regelventile	DN15-25	DN15-25	DN15-20	DN25-32	DN40-50	DN65-80	DN100-125	DN150	DN15-25	DN10-32	DN15-50	DN150
TA-Slider 160	V 4	/	/	/						✓		
TA-Slider 500					✓						✓	
TA-Slider 750					1 6	✓						
TA-Slider 1250							/					✓
ЕМО Т	/								✓	✓		
ЕМО ТМ	5	/	/							✓		
ЕМО 3	5	/	/							✓		
TA-MC15	/	/	/							/		
TA-MC50-C											/	
TA-MC160								√ ⁷			/	

⁴ Möglich, aber lineare Regelcharakteristika des Ventils müssen durch den EQM-Regelmodus des Stellantriebs ausgeglichen werden (TBV-CM empfohlen). 5 Sowohl Stellantrieb als auch Ventil haben eine lineare Regelcharakteristik. Für stetige Regelungen wird TBV-CM empfohlen. 6 Möglich, aber spezieller Anschluss notwendig. 7 Adapter mit Ventil-Lieferumfang inklusive.

TA-Slider 160, 500

- Vollständig per Smartphone konfigurierbar
- Handbetätigung mit TA-Dongle
- Speicherung der letzten 10 Fehler
- Hohe Schutzklasse IP54 in jeder Einbaulage
- Binäreingang und Relais konfigurierbar
- BUS-Kommunikation mit BACnet, Modbus und KNX BUS-Protokoll
- Stellkraft: TA-Slider 160 (160/200 N), TA-Slider 500 (500 N)
- Changeover-Ausführung erhältlich

Stetige Regelung

TA-Slider 750, 1250

- Vollständig per Smartphone konfigurierbar
- Handbetätigung mit Sechskantschlüssel oder TA-Dongle
- Speicherung der letzten 10 Fehler
- Hohe Schutzklasse IP54
- Binäreingang und 2 Relais konfigurierbar
- Kompatibel mit BACnet- oder Modbus Protokoll
- Stellkraft: TA-Slider 750 (750N), TA-Slider 1250 (1250N)

Stetige, 3-Punkt oder On/Off-Regelung

EMO T

- Sichtbare Positionsanzeige
- Hohe Schutzklasse IP54 in jeder Einbaulage
- Arbeitet lageunabhängig
- Anschluss M30x1,5
- Stellkraft 125 N

On-Off-Regelung

EMO TM

- Sichtbare Positionsanzeige
- Für 4 unterschiedliche Eingangssignalvarianten einsetzbar
- Automatische Hubanpassung
- Hohe Schutzklasse IP54 in jeder Einbaulage
- Arbeitet lageunabhängig
- Anschluss M30x1,5
- Stellkraft 125 N

Stetige Regelung

EMO 3

- Automatische Hubanpassung
- Geräuscharmer Betrieb
- Geringer Energieverbrauch
- Anschluss M30x1,5
- Stellkraft 150 N

3-Punkt-Regelung

TA-MC15-C

- Für IMI TA Einregulier- und Regelventile
- Anschluss M30x1,5
- Automatische Hubanpassung
- Positionsanzeige
- Geringer Stromverbrauch
- Stellkraft 200 N

Stetige oder 3-Punkt-Regelung

TA-MC50-C

- Für IMI TA druckunabhängige Regelventile KTM 512 DN 15-50
- Anschluss M30x1,5
- Automatische Hubanpassung
- Positionsanzeige
- Geringer Stromverbrauch
- Stellkraft 500 N

Stetige oder 3-Punkt-Regelung

TA-MC55. TA-MC65

- Automatische Hubanpassung
- Min-Max-Positionsanzeigen
- Binäreingangssignal für Frostschutzfunktion
- Blockadeerkennung
- Verschiedene Laufzeiten
- Handbetrieb möglich
- Stromverbrauch
- Stellkraft 600N

Stetige oder 3-Punkt-Regelung

TA-MC100

- 24-V-Version ermöglicht stetige oder 3-Punkt-Regelung (Schalter)
- Automatische Hubanpassung
- Min-Max-Positionsanzeigen
- Binäreingangssignal für Frostschutzfunktion
- Blockadeerkennung
- Drahtbrucherkennung
- Einstellbare Hysterese für Eingangssignal
- Verschiedene Laufzeiten
- Handbetrieb möglich
- Geringer Stromverbrauch
- Stellkraft 1000N

Stellantriebe für Standardregelventile

KOMBINATIONEN MIT STANDARDREGELVENTILEN

Stellantriebe für	CV216/316 RGA		CV206/306 GG			CV216/	'316 GG	
Standardregelventile	DN 15-50	DN 15-50	DN 65	DN 80-100	DN 15-50	DN 65	DN 80-100	DN 125-150
TA-MC55	✓	/			✓			
TA-MC65			1 2			/		
TA-MC100	/	-	1 2		/	1 2		
TA-MC100 FSE/FSR	/	/			/			
TA-MC160			V 3	/		3	/	
TA-MC161	√ ¹		1 2			✓		
TA-MC250			V ³	/		1 3	/	/
TA-MC400			1 3	/		1 3	/	/
TA-MC500			1 3	/		1 3	-	/
TA-MC1000								/
TA-Slider 750	✓	✓	1 2		✓	1 2		

Für DN 32-50 Für Ventile mit 20 mm Hub Für Ventile mit 30 mm Hub

Stellantriek Standardre		FUNKTIONSPRINZIP	NOTSTELL- FUNKTION	BETRIEBSSPANNUNG [V]	EINGANGSSIGNAL	AUSGANGSSIGNAL	HUB [mm]
TA-MC55/24		3-PUNKT	-	24 VAC/VDC	3-PUNKT	0-10 VDC	20
TA-MC55/230	4	3-PUNKT	-	230 VAC	3-PUNKT	0-10 VDC	20
TA-MC55Y		STETIG	-	24 VAC/VDC	0(2)-10 VDC/0(4)-20 mA	0-10 VDC	20
TA-MC65/24		3-PUNKT	-	24 VAC/VDC	3-PUNKT	0-10 VDC	20
TA-MC65/230	4	3-PUNKT	-	230 VAC	3-PUNKT	0-10 VDC	20
TA-MC65Y		STETIG	-	24 VAC/VDC	0(2)-10 VDC/0(4)-20 mA	0-10 VDC	20
TA-MC100/24		STETIG/3-PUNKT	-	24 VAC/VDC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	20
TA-MC100/23	0 4	STETIG/3-PUNKT	-	230 VAC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	20
TA-MC100 FS	E/FSR	STETIG	JA	24 VAC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC / 0(4)-20 mA	20
TA-MC100 FS	E/FSR	3-PUNKT	JA	230 VAC	3-PUNKT	0-10 VDC	20
TA-MC160/24		STETIG/3-PUNKT	-	24 VAC/VDC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	30
TA-MC160/23	0 4	STETIG/3-PUNKT	-	230 VAC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	30
TA-MC161/24		STETIG/3-PUNKT	-	24 V VAC/VDC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	20
TA-MC161/23	04	STETIG/3-PUNKT	-	230 VAC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	20
MC250/24		STETIG/3-PUNKT	-	24 VAC/VDC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	50
MC250/230 ⁴		STETIG/3-PUNKT	-	230 VAC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	50
MC400/24		STETIG/3-PUNKT	-	24 VAC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	60
MC400/2304		STETIG/3-PUNKT	-	230 VAC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	60
MC500/24		STETIG/3-PUNKT	-	24 VAC/VDC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	50
MC500/230 ⁴		STETIG/3-PUNKT	-	230 VAC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	50
MC1000/24		STETIG/3-PUNKT	-	24 VAC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	50
MC1000/2304		STETIG/3-PUNKT	-	230 VAC	0(2)-10 VDC/0(4)-20 mA 3-PUNKT	0-10 VDC ⁵	50

Spannung 115 VAC erhältlich Ausgangssignal 4(0)-20mA als Zubehör erhältlich Max. Differenzdruck 3,5 bar

Stellantriebe für Standardregelventile

TA-MC55, **TA-MC65**

- · Automatische Hubanpassung
- Min-Max-Positionsanzeigen
- Binäreingangssignal für Frostschutzfunktion
- Blockadeerkennung
- Verschiedene Laufzeiten
- Handbetrieb möglich
- Stromverbrauch
- Stellkraft 600N

Stetige oder 3-Punkt-Regelung

TA-MC100

- 24-V-Version ermöglicht stetige oder 3-Punkt-Regelung (Schalter)
- Automatische Hubanpassung
- Min-Max-Positionsanzeigen
- Binäreingangssignal für Frostschutzfunktion
- Blockadeerkennung
- Drahtbrucherkennung
- Einstellbare Hysterese für Eingangssignal
- Verschiedene Laufzeiten
- Handbetrieb möglich
- Geringer Stromverbrauch
- Stellkraft 1000N

Stetige oder 3-Punkt-Regelung

TA-MC100 FSE/FSR

- Sichtbarer Schalter zum Test der Notstellfunktion
- TA-MC100FSE: Ausgefahrene Spindel bei Stromausfall
- TA-MC100FSR: Eingefahrene Spindel bei Stromausfall
- Automatische Hubanpassung
- Min-Max-Positionsanzeigen
- Binäreingangssignal für Frostschutzfunktion
- Blockadeerkennung
- Drahtbrucherkennung
- Schutz vor Schwankungen des Eingangssignals
- Handbetrieb möglich
- Stromverbrauch
- Stellkraft 1000N

Stetige oder 3-Punkt-Regelung

TA-MC160, TA-MC161

- 24-V-Version ermöglicht stetige oder 3-Punkt-Regelung (Schalter)
- Automatische Hubanpassung
- Min-Max-Positionsanzeigen
- Binäreingangssignal für Frostschutzfunktion
- Blockadeerkennung
- Drahtbrucherkennung
- Einstellbare Hysterese für Eingangssignal
- Verschiedene Laufzeiten
- Manueller Modus
- Geringer Stromverbrauch
- Stellkraft 1600N

Stetige oder 3-Punkt-Regelung

MC250, 400, 500, 1000

- Automatische Hubanpassung
- Min-Max-Positionsanzeigen
- Binäreingangssignal für Frostschutzfunktion
- Blockade-, Drahtbruch- und Verriegelungserkennung
- Überhitzungsschutz
- Interne Temperaturüberwachung
- Automatische Erwärmung des Stellantriebs
- Erkennung offener Kreisläufe
- Einstellbare Hysterese für Eingangssignal
- Verschiedene Laufzeiten
- Autounterbrechung zur Vermeidung von Regelschwankungen
- Handbetrieb möglich
- Geringer Stromverbrauch
- Stellkraft:
- MC250 2.5 kN
 MC400 4 kN
 MC500 5 kN

- MC1000 10 kN

Stetige oder 3-Punkt-Regelung

TA-Slider 750, 1250

- Vollständig per Smartphone konfigurierbar
- Handbetätigung mit Sechskantschlüssel oder TA-Dongle
- Speicherung der letzten 10 Fehler
- Hohe Schutzklasse IP54
- Binäreingang und 2 Relais konfigurierbar
- Kompatibel mit BACnet- oder Modbus Protokoll
- Stellkraft: TA-Slider 750 (750N), TA-Slider 1250 (1250N)

Stetige, 3-Punkt oder On/Off-Regelung

eine gegen Entzinkung Genauigkeit resistente Legierung bei allen Einstellwerten

Hohe

Ergonomisches Handrad mit digitaler Anzeige für

verbesserte Bedienung

Hergestellt aus AMETAL®,

Das erste Einregulierventil der Welt wurde 1957 in unserem Werk in Schweden produziert

EINREGULIERUNG

Der rasante Anstieg der Energiepreise und immer höherer Gebäudekomfort machen perfekt funktionierende Systeme erforderlich, die optimale Bedingungen für den reibungslosen Betrieb Ihres Gebäudemanagementsystems

Die einwandfreie hydraulische Einregulierung ist eine grundlegende Voraussetzung für wahren Komfort zu minimalen Energiekosten.

Unser Konzept "Totale hydraulische Einregulierung" ist bereits seit mehr als 50 Jahren weltweit in Millionen von Anwendungen zum Einsatz gekommen. Überdies wird es aufgrund neuer Erfahrungen mit realen Installationen kontinuierlich verbessert

Es steht für eine Kollektion einzigartiger Einregulierventile, Differenzdruckregler, Einregulierinstrumente, patentierter Einreguliermethoden, intelligenter Einregulierverfahren und ausgezeichneter Schulungsprogramme, in denen wir unsere Erfahrungen mit Ihnen teilen.

TOTALE HYDRONISCHE EINREGULIERUNG

B1 🔀	Einregulierventile	26
B2	Messblenden	29
B3 🔀	Regulierventile	30
B4 🖟	Differenzdruckregler	31
B5 👼	Überströmventile	33

Einregulierventile

Umfassendes Sortiment

IMI TA-Einregulierventile sind in den Größen DN 10-400 erhältlich und kommen in unzähligen Anwendungen zum Einsatz. Sie eignen sich ideal für die Verwendung in Heiz- und Kühlsystemen, Trinkwassersystemen und in der Industrie. STAD und STAF sind weltweit die bekanntesten Einregulierventile.

Absolute Gewissheit

Die von unseren Kunden eingesetzte Einreguliertechnologie ist aus 50 Jahren Erfahrung aus über 100.000 Projekten weltweit entstanden. Patentierte Einreguliermethoden wie TA-Diagnostics und TA-Wireless versetzen Sie in die Lage, mit absoluter Gewissheit Projekte jeder Größenordnung erfolgreich einzuregulieren. Unsere patentierten Materialien und technischen Merkmale enttäuschen niemals.

WICHTIGE TECHNISCHE PARAMETER

	Einregulier-	PN	Min. Temp.	Max. Temp.								Din	nensio	nen							
B1	ventile	bar	°C	°C	10	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400
	TBV	16	-20	120		✓	✓														
	STAD-R	25	-20	120		✓	✓	✓													
	STAD	25	-20	120	✓	✓	✓	✓	/	/	/										
	STAD-C	20	-20	120/150	/	✓	✓	✓	/	/	/										
	STAD-B	25	-20	120	✓	✓	✓	✓	/	/	/										
	STAD-D	25	-20	120	✓	✓	✓	✓	/	✓	/										
	STAF	16	-10	120								/	/	/	/	/					
	STAF-R	16	-20	120								✓	/	/	/	/					
	STAG	25	-20	120								✓	/	/	/	/	/	✓	/		
	STAF-SG	16/25	-20	120			✓	✓	/	/	/	✓	/	✓	✓	/	✓	✓	✓	✓	/
	TA-BVS 240/243	16/25/40	-30	200		✓	✓	✓	/	/	/	✓	/	/	/	/	✓	✓			

FUNKTIONEN

B1	Einregulier- ventile	Gehäusematerial	Anschluss	Doppelt versiegelte Messnippel	Entleerung	Druckentlasteter Ventilkegel	Trinkwasserzertifiziert
	TBV	AMETAL®	Gewinde				
	STAD-R	AMETAL®	Gewinde		✓		
	STAD	AMETAL®	Gewinde		1		
	STAD-C	AMETAL®	Gewinde	✓			
	STAD-B	AMETAL® mit elektrophoretischer Beschichtung	Gewinde		✓		/
	STAD-D	AMETAL® MIT T.E.A. PLUS® Oberflächenveredelung	Gewinde		✓		/
	STAF	Gusseisen	Geflanscht			/	
	STAF-R	Rotguss	Geflanscht			/	
	STAG	Sphäroguss	Genutet			/	
	STAF-SG	Sphäroguss	Geflanscht			v ²	
TA	-BVS 240/243	Edelstahl	Geflanscht / Schweißanschluss				

- Spezielle Ausführung erhältlich
- Nur für DN 65

TBV

- Ideales Ventil zur Einregulierung kleiner Verbraucher
- Kompakte Größe
- Vollständige Messfunktionen
- Besteht aus der patentierten Legierung AMETAL®

STAD

- Das weltweit beliebteste Einregulierventil
- Ausgezeichnete Messgenauigkeit
- Ergonomisches Handrad mit exakter Einstellungsanzeige
- Optional mit/ohne 3/4" Entleerung
- Besteht aus der patentierten Legierung AMETAL®

STAD-C

- Speziell geeignet für Kühlsysteme mit Frostschutzzusätzen, aber auch für den Einsatz bei hohen Temperaturen geeignet.
- Doppelt abgedichtete Messnippel mit hohem Leckageschutz
- Ergonomisches Handrad mit genauer Digitalanzeige
- Außengewinde oder glatte Endstücke für einen festen und zuverlässigen Anschluss
- Besteht aus der patentierten Legierung AMETAL®

- Einzigartiges Einregulierventil für Sanierungen mit reduziertem Kv-Wert
- Reduzierung der Rohrleitung nicht erforderlich; senkt die Einbaukosten
- Ergonomisches Handrad mit genauer Digitalanzeige
- Vollständige Messfunktionen mit hoher Genauigkeit
- Besteht aus der patentierten Legierung AMETAL®
- Entleerungsadapter serienmäßig

STAD-D

- Einregulierventil für Warmwassersysteme mit besonderem Schutz vor Erosionskorrosion
- Zertifiziert für die Nutzung in Trinkwassersystemen
- Ergonomisches Handrad mit genauer Digitalanzeige
- Ausgezeichnete Messgenauigkeit
- Besteht aus der patentierten Legierung AMETAL®
- Entleerungsadapter serienmäßig

STAF, STAF-SG

- Druckentlasteter Ventilkegel zur leichtgängigen Betätigung bei hohen Differenzdrücken
- Ausgezeichnete Messgenauigkeit mit hochauflösender Einstellungsanzeige
- Haube, Kegel und Spindel aus entzinkungsbeständiger Legierung AMETAL®

STAG

- Einregulierventil mit genuteten Enden
- Druckentlasteter Ventilkegel zur leichtgängigen Betätigung bei hohen Differenzdrücken
- Ausgezeichnete Messgenauigkeit
- Haube, Kegel und Spindel aus patentierter Legierung AMETAL®

STAF-R

- Aus Rotguss mit hoher Korrosionsbeständigkeit für Trinkwasser und Industriewassersysteme
- Druckentlasteter Ventilkegel zur leichtgängigen Betätigung bei hohen Differenzdrücken
- Ausgezeichnete Messgenauigkeit
- Haube, Kegel und Spindel aus patentierter Legierung AMETAL®

TA-BVS 240/243

- Edelstahl-Einregulierventil mit Flanschanschlüssen oder Anschweißenden
- Ideal für den Einsatz in Industrieanlagen und für Hochtemperaturanwendungen
- Langlebiger und wartungsfreier Betrieb
- DN 200 und 250 mit Getriebe-Absperrvorrichtung

Messblenden

Messblenden mit selbstdichtenden Messnippeln werden in Heizund Kühlsystemen oder in industriellen Systemen mit konstantem Durchfluss zur einfachen Durchflussmessung verwendet.

Unsere Messblenden werden sorgfältigst aus Edelstahl hergestellt und garantieren Langlebigkeit und äußerst akkurate Messleistungen.

Der Einbau erfolgt zwischen zwei Gegenflanschen. Zur Einhaltung der Messgenauigkeit wird empfohlen, die Beruhigungsstrecken von 10D im Zulauf und 5D im Auslauf einzuhalten.

WICHTIGE TECHNISCHE PARAMETER

Feste	PN	Min. Temp.	Max. Temp.								Dir	nensio	nen							
Düsen	bar	°C	°C	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400	450	500- 900
MDF0	16	-20	120	✓	/	/	✓	✓	✓	/	✓	/								
MDF0	25	-20	120						/	/	/	/	/	✓	✓	✓				
MDF0	40	-20	120						√	/	V	/	✓	√	✓	✓	✓	√	√	

MDF0

- Aus Edelstahl
- Anwendbar in Heizungs-, Kühlungs- und Industrieanlagen
- Messnippel aus entzinkungsbeständiger Legierung AMETAL®
- Ausgezeichnete Messgenauigkeit

Regulierventile

WICHTIGE TECHNISCHE PARAMETER

B3 Doppelt Regulierventile	PN	Min. Temp.	Max. Temp.			Dimen	sionen							
Boppett Hegalier vertale	bar	°C	°C	15	15 20 25 32 40									
STK	16	-20	120	✓	✓									

FUNKTIONEN

B3 Doppelt Regulierventile	Voreinstellung	Absperrung	Messung	Entleerung
STK	✓	✓		

STK

- Rücklaufverschraubung mit direkter Kv-Wert-Anzeige
- Einstellung mit Verriegelungsring
- Absperrfunktion
- Besteht aus der vernickelten, patentierten Legierung AMETAL®

Differenzdruckregler

WICHT	ICE TEC	CHNISCH		VI — — — —
W I G I	101-01-01		1 = 1 = / A B Y A	VII - II - B

B4	Different dure les elles	PN	Min. Temp.	Max. Temp.	Max. Dp	Regelung						Din	nensio	nen					
В4	Differenzdruckregler	bar	°C	°C	bar	kPa	10	15	20	25	32	40	50	65	80	100	125	150	200
	STAP	16	-20	120	2.5	5-80		✓	/	/	✓	/	/						
	STAP	16	-10	120	3.5	20-160								✓	✓	✓			
	DA 516	25	-10	120/150	16	5-150		✓	√	✓	✓	✓	✓						
	DAF 516	16/25	-10	150	16	5-150		✓	/	/	/	/	/	/	✓	✓	/		
	TA-PILOT-R	16/25	-20	120/150	12	10-400								/	✓	✓	/	√	/
	TA-COMPACT-DP	16	-20	120	4	5-18	/	V	✓	/									

FUNKTIONEN

B4 Differenzdruckregler	Rücklauf	Vorlauf	Messung	Absperrung	Entleerung (optional)	Messung von Durchfluss und anstehendem Differenzdruck	Zonenregelung
STAP	✓		✓	✓	✓		
DA 516	✓		✓				
DAF 516		✓	✓		✓		
TA-PILOT-R	✓		✓				
TA-COMPACT-DP		/	/	/		✓	✓

DIFFERENZDRUCKBEREICH (kPa)

STAP											
DN	5-25	10-40	10-60	20-80	40-160						
15	/		\								
20	V		V								
25			V								
32		-		√							
40		-		√							
50				√							
65				√	/						
80				V	/						
100				V	/						

DA 516												
DN	5-25	10-40	10-40 10-6		20-80	40-160						
15	V		~									
20	V		V									
25			V									
32		/			\							
40		/		/								
50					/							
	DAF 516											
DN	5-30	10-6	60	10	-100	60-150						
15/20	/	-		,	/	√						
25/32	/	-)	\		/						
40/50	/	-	·		/	/						

DAF 516										
DN	5-30	1	0-60	10-10	0	60-150				
65	✓	-		- /		- /				
80	\	/		✓		/				
100	\	/		/		/				
125	V	/		/		/				
TA-PILOT-R										
DN	10-50		30-	150	80-400					
65	/		1		-					
80	/		1	/	/					
100	/		_	/	-					
125	/		V			✓				
150	/		\	/	/					
200	/		,	/	/					

Differenzdruckregler

STAP DN 15-50

- Optimaler ∆p-Regler mit Absperrfunktion für Heizkörper/Klimakreisläufe
- Messnippel zur Messung von Rücklauftemperatur/Druck
- Entleerung optional als Zubehör, Montage ohne Systementleerung
- Besteht aus der patentierten Legierung AMETAL®

STAP DN 65-100

- Optimaler ∆p-Regler für Sekundärkreise in HLK-Systemen
- Zwei Messnippel zur Systemdiagnose mit Messung von Temperatur und Differenzdruck
- Besonderer Messnippel zum Kapillaranschluss an STAF, im Lieferumfang enthalten
- Funktioniert in allen Einbaulagen

DA 516 / DAF 516

- Patentierte Inline-Bauform für geräuscharmen Betrieb bei hohen Differenzdrücken
- Besonders effektiv in Systemen mit hohen Temperaturen und Differenzdrücken
- Äußerst exakte Differenzdruckregelung mit sehr niedriger Hysterese
- Korrosionsschutz durch elektrophoretische Lackierung auf Sphäroguss-Ventilgehäuse
- Kompakte Bauform spart Einbauplatz
- Einfach zu dämmen
- DAF zur Verwendung in Zuleitung, 2 Kapillaren

TA-PILOT-R

- Erster mit Pilot-Technologie betriebener Inline-∆p-Regler
- Der kleinste, leichteste und genaueste ∆p-Regler auf dem Markt
- Deutlich sichtbare Einstellung, mit Manipulationsschutz
- Messnippel zur Systemdiagnose und exakten Einstellung entsprechend der realen Anlagenbedingungen

TA-COMPACT-DP

- · Alles in einem: Zonenregelventil, Einregulierventil und Differenzdruckregler
- Die ideale Lösung für die Zonenregelung in Mehrfamilienhäusern
- Kompaktes Ventil für raumsparende Lösungen
- Ermöglicht Durchflussmessungen und Systemdiagnosen
- Empfohlener Stellantrieb: EMO T

Siehe Anwendungen

Überströmventile

Überströmventile dienen in Heiz- und Kühlsystemen dazu, einen Mindestdurchfluss durch die Pumpe zu gewährleisten, die gewünschte Vorlauftemperatur aufrechtzuerhalten

wenn das System unter Schwachlast läuft oder um in Kreisläufen den anstehenden Differenzdruck zu stabilisieren.

WICHTIGE TECHNISCHE PARAMETER

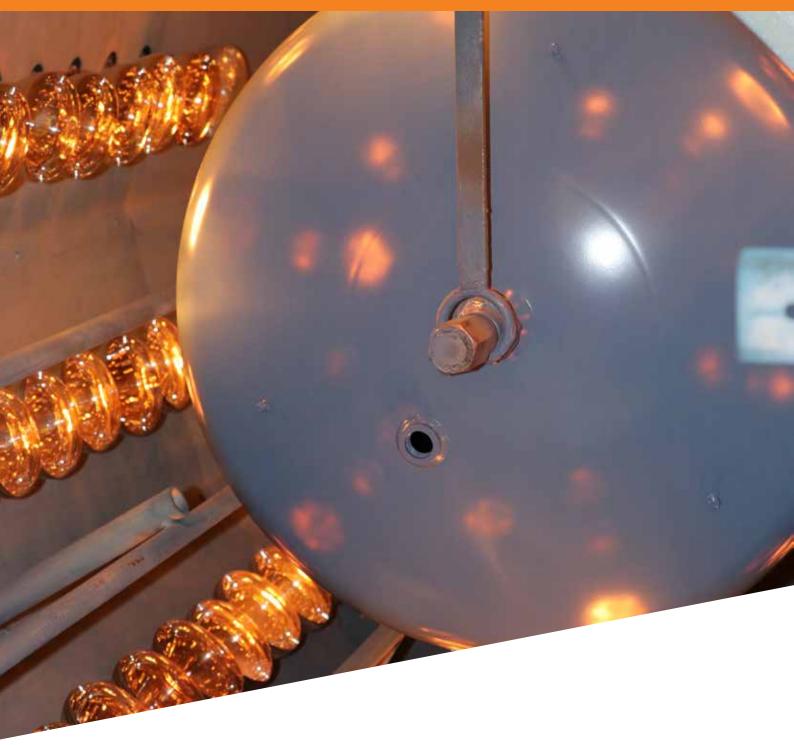
B5 Überströmventile	PN	Min. Temp.	Max. Temp.	Einstellbereich	Absperrung	Dimensionen											
	bar	°C	°C	kPa		15	20	25	32	40	50	65	80	100	125	150	200
Hydrolux	16	-10	120	5-50, 30-180	NEIN		V	V	V								
				l			1							1	1		
BPV	20	-20	120	10-60	JA	V	V	V	V								
DAB 50	16/25	-10	150	10-250	NEIN				√	√	√	V	√	√	√	V	✓
PM 512	16/25	-10	100	0-1600	NEIN	V	/	V	V	✓	V	V	V	V	V		

BPV

- Einstellskala mit Abdeckung zum Schutz vor Schmutz und Manipulation
- Absperrfunktion
- Einfache Einstellung mit 3-mm-Inbusschlüssel
- Hergestellt aus AMETAL®

Hydrolux

- Direkte Einstellung über Handrad mit Einstellskala
- Sehr niedriges Proportionalband
- Sehr geräuscharmer Betrieb
- Aus korrosionsbeständigem Rotguss


DAB 50

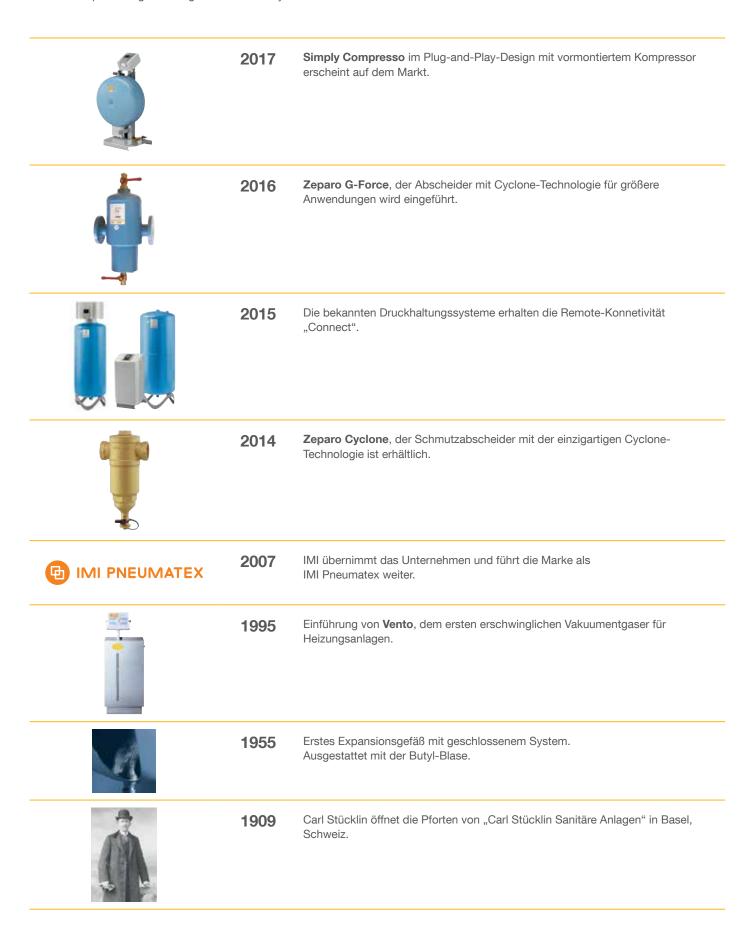
- Besondere Ventilgeometrie
- Geräuscharmer Betrieb bei hohen Differenzdrücken
- Schutz vor Korrosion
- Robustes Ventil für anspruchsvolle Anwendungen

PM 512

- Pneumatisches Prinzip ermöglicht Einstellung des Sollwerts zwischen 0 und 16 bar
- Inline-Design für geräuscharmen Betrieb
- Öffnet bei ansteigendem Zulaufdruck
- Einstellung abhängig vom statischen Druck im System

IMI Pneumatex: Druckhaltung und Wasserqualität

Vorsorge ist besser als reparieren.


IMI Pneumatex bringt leistungsstarke und innovative Technologien auf den Markt, die HLK-Anlagen frei von Gasen, Schmutz und Schlamm halten und eine lange Lebensdauer, optimale Leistung und Zuverlässigkeit garantieren.

Innovation, schweizerische Fertigungsqualität und ein ausgezeichneter Kundenservice sind die Merkmale, die uns von anderen unterscheiden.

Eckdaten zur Marke ©

IMI Pneumatex wurde 1909 in Basel, Schweiz, gegründet und ist ein echter Pionier der Druckhaltung und entwickelt Produkte - wie 1955 das erste Expansionsgefäß mit geschlossenem System - die bis heute marktführend sind.

Druckhaltung

WARUM IST DIE DRUCKHALTUNG SO WICHTIG?

Das in wassergeführten Heizungs-, Solar- und Kühlanlagen enthaltene, nicht komprimierbare Anlagenmedium (z.B. Wasser), dehnt sich aus und zieht sich zusammen, je nach Temperatur. Dies führt zu Veränderungen des Volumens.

Wenn die Temperatur steigt, dehnt sich das Anlagenmedium aus und somit steigt der Systemdruck. Diese Belastung kann an den eingebauten Komponenten zu Schäden und Ausfällen führen.

Wenn die Temperatur sinkt, reduziert sich das Volumen und der Systemdruck fällt ab. Das kann dazu führen, dass Luft in die Anlage eindringen kann. Dort entsteht dadurch Korrosion, die in jeder HLK-Anlage erhebliche Schäden verursachen kann.

DRUCKHALTUNG

C1	Ausdehnungsgefäße	37
C2 (Automatische Druckhaltesysteme	39
C3 - 1	Sicherheitsventile	41

Ausdehnungsgefäße

Unter dem Markennamen IMI Pneumatex bietet IMI Hydronic Engineering hochwertige Lösungen, um in geschlossenen Systemen die Druckschwankungen auszugleichen. Die **Airproof**-Butyl-Blasen in den Ausdehnungsgefäßen von IMI Pneumatex gewährleisten einen sehr hohen Diffusionswiderstand. Die für die Kautschukmischung verwendeten Materialien werden seit Jahrzehnten von handverlesenen Lieferanten beschafft. Die Vulkanisation von Butylkautschuk erfolgt in unseren Werken mit speziell gebauten Maschinen.

IHRE VORTEILE

- Niedrigster Gasdiffusionskoeffizient auf dem Markt - 3,3 % für Ausdehnungsgefäße
- Auswahl unterschiedlicher Dimensionen entsprechend den Bedürfnissen des Investors
- 5 Jahre Garantie auf die Butyl-Blase

WICHTIGE TECHNISCHE PARAMETER

C1 Ausdehnungsgefäße	Druck- klasse	T min/max der Flüssigkeit	Vn	Anschluss	Max% Glykol	Montageart	Konstruktion
/ tuouo:unigogotupo	bar	°C	I	DN	%		
Statico SD	3/10	+5 / +70	8-80	R½" / R¾"	50%	hängend/liegend	Blase
Statico SU	3/6/10	+5 / +70	140-800	R3/4"	50%	stehend	Blase
Statico SG	6/10	+5 / +70	1000 - 5000	R 1 ½"	50%	stehend	Blase
Squeeze	6	+5 / +70	140-800	R 1"	50%	stehend	Membran
Aquapresso AD	10	+5 / +70	8-80	R½" / R¾" / R 1"	-	hängend/liegend	Blase
Aquapresso ADF	10	+5 / +70	8-80	2 x R½" / 2 x R¾" / 2 x R 1"	-	hängend/liegend	Blase - Durchfluss
Aquapresso AU	10	+5 / +70	140-500	R 1¼"	-	stehend	Blase
Aquapresso AUF	10	+5 / +70	140-600	2 x R 1¼"	-	stehend	Blase - Durchfluss
Aquapresso AG	10	+5 / +70	700-3000 / 300-3000	DN 50 – DN 80	-	stehend	Blase
Aquapresso AGF	10 / 16	+5 / +70	700-3000 / 300-3000	2x DN 50 – 2x DN 80	-	stehend	Blase - Durchfluss

ANWENDUNGEN

Statico SD

- Vollverschweißte Konstruktion
- Butyl-Blase
- Das Medium befindet sich in einer geschlossenen Blase ohne Kontakt zur Stahlbehälterwand
- Gasdiffusionskoeffizient unter 3,3 %
- Wand-hängende Montage

Statico SU

- Vollverschweißte Konstruktion
- Butyl-Blase
- Das Medium befindet sich in einer geschlossenen Blase ohne Kontakt zur Stahlbehälterwand
- Gasdiffusionskoeffizient unter 3,3 %
- Stehende Montage

Statico SG

- Vollverschweißte Konstruktion
- Austauschbare Butyl-Blase
- Das Medium befindet sich in einer geschlossenen Blase ohne Kontakt zur Stahlbehälterwand
- Gasdiffusionskoeffizient unter 3,3 %
- Stehende Montage

Squeeze

- Membranausdehnungsgefäß
- Vollverschweißte Konstruktion
- Stehende Montage

Aquapresso AD, ADF

- Butyl-Blase
- Das Medium befindet sich in einer geschlossenen Blase ohne Kontakt zur Stahlbehälterwand
- Gasdiffusionskoeffizient unter 3,3 %
- Wand-hängende Montage
- Bei ADF minimiert die Durchströmung der Blase das Risiko von Legionellenwachstum
- Sichtfenster zur Kontrolle auf Blasenundichtigkeiten

Aquapresso AU, AUF, AG, AGF

- Blasenkonstruktion
- Geschweißte Schalennähte
- Butyl-Blase
- Das Medium befindet sich in einer geschlossenen Blase ohne Kontakt zur Stahlbehälterwand
- Gasdiffusionskoeffizient unter 3,3 %
- Stehende Montage
- Bei AUF und AGF minimiert die Durchströmung der Blase das Risiko von Legionellenwachstum
- Bei AG und AGF ist die Butyl-Blase austauschbar

Automatische Druckhaltesysteme

Automatische Druckhaltesysteme von IMI Pneumatex mit der Bezeichnung Airproof verfügen über eine Butyl-Blase. Die Produkte der Reihe Compresso bieten einen niedrigen Geräuschpegel dank SilentRun. Die Transfero- Pumpen-Druckhaltesysteme mit VacuCyclonSplit-Technologie beinhalten eine Vakuum-Cyclone-Entgasung.

Alle Systeme sind mit einer BrainCube-Connect-Steuerung ausgestattet, die eine Reihe von einzigartigen Funktionen sowie Online-Überwachung Fernzugriff bietet.

IHRE VORTEILE

- Innovative BrainCube-Connect-Steuerung
- Blasengefäße mit dem niedrigsten Diffusionskoeffizienten von 3,3 % auf dem Markt
- Vielfältige Standard-Funktionen in einem Gerät

WICHTIGE TECHNISCHE PARAMETER

2 TecBox		Max. Betriebsdruck	Stromversorgung U, P	Abmessungen TecBox	TecBox Gewicht	Fassungsvermöge der Gefäße
Hydraulikteil		bar	V, kW	mm	kg	1
Simply Compresso	C2.1-80 SWM	6	230; 0.6	603x481x1107	41	80/160
Compresso Connect F	C10.1-3.75 F C10.1-5F C10.1-6F	3,75 5 6	230; 0.6	370x370x315	14	200-800
Compresso Connect	C10.1-3 C10.1-3.75 C10.1-4.2 C10.1-5 C10.1-6 C15.1-6 C15.1-10	3 3.75 4.2 5 6 6 10	230; 0.6	520x350x1060	25	200-5000
Compresso Connect	C10.2-3 C10.2-3.75 C10.2-4.2 C10.2-5 C10.2-6 C15.2-6 C15.2-10	3 3.75 4.2 5 6 6 10	230; 1.2	520X350X1060	38	200-5000
Transfero TV	TV4.1E (H) (C) TV6.1E (H) (C) TV8.1E (H) (C) TV10.1E (H) (C) TV14.1E (H) (C) TV4.2E (H) (C) TV6.2E (H) (C) TV8.2E (H) (C) TV10.2E (H) (C) TV10.2E (H) (C)	10 10 10 10 13 10 10 10 10	230; 0.75 230; 1.1 230; 1.4 230; 1.7 230; 1.7 230; 1.5 230; 2.2 230; 2.8 230; 3.4 230; 3.4	500x530x920 500x530x920 500x530x920 500x530x1300 500x530x1300 500x530x920 500x530x920 500x530x920 500x530x1300	42 45 46 51 73 51 54 57 71 98	200-5000
Transfero TVI	TVI 19.1EH (C) TVI 25.1EH (C) TVI 19.2EH (C) TVI 25.2EH (C)	16 25 16 25	230; 2,6 230; 3,4 230; 5,2 230; 6,8	570x1086x601 570x1258x601 751x1086x601 751x1258x601	85 94 132 150	200-5000
Transfero TI (Die Tabelle enthält ausgewählte Modelle. Weitere Informationen im technischen Datenblatt.)	TI 90.2 PC1 TI 120.2 PC1 TI 150.2 PC1 TI 150.2 PC1 TI 190.2 PC1 TI 230.2 PC1	16 16 16 25 25	3x400; 3,0 3x400; 3,8 3x400; 5,4 3x400; 5,4 3x400; 7,2	1100x1100x1200 1100x1100x1200 1100x1100x	135 145 170 195 215	1000-5000

ANWENDUNGEN

				O / L ois	tuna: 0 MW										► 160 MW
					_										-
				Statischer	Druck 0 bar		 I		 I			 I	 I		20 bar
								æ				HOSPI TAL			
C2 TecBox Hydrauliktei	Druckhalte- system mit Kompressor	Druckhalte- system mit Pumpe	Vakuument- gasung	Mod- bus-Kom- munikation	Ether- net-Kom- munikation	Kleines Wohnhaus	Großes Wohnhaus	Kleines Gebäude	Supermarkt	Einkaufs- zentrum	Großes ge- werbliches Gebäude	Hospital	Hochhaus	Energiever- sorgungsan- lagen	Industriean- lagen
Simply Compres	sso 🗸			/	/		/	V	/						
Compresso C, C	CF 🗸			/	✓		- /	/	✓	√	V	- /			
Transfero TV		✓	/	/	✓			V	✓	✓	V	/	/		
Transfero TVI		✓	/	/	V						✓	/	/	/	V
Transfero TI		✓		/	✓								/	/	-

Simply Compresso

- Kompressoren-Druckhaltestation mit BrainCube-Connect-Steuerung
- Kompaktgerät bestehend aus TecBox und 80 Liter Gefäß mit Erweiterungsmöglichkeit um 80 I
- Modul zur automatischen Nachspeisung
- Das Medium ist in einer Blase ohne Kontakt zur Stahlschale eingeschlossen
- Präzise Druckhaltung ±0,1 bar
- Plug-and-Play-Design
- Modbus- und Ethernet-Kommunikation als Standard

COMPRESSO C F

- Kompressoren-Druckhaltestation mit BrainCube-Connect-Steuerung
- BrainCube-Steuerung bei externer Luftversorgung
- Modbus- und Ethernet-Kommunikation als Standard
- Verringerter Platzbedarf durch Montage der TecBox auf dem Gefäß
- Niedriger Geräuschpegel 59 dB(A) /1 bar
- Präzise Druckhaltung ±0,1 bar

COMPRESSO C

- Kompressoren-Druckhaltestation mit BrainCube-Connect-Steuerung
- Modbus- und Ethernet-Kommunikation als Standard
- Niedriger Geräuschpegel: Silent-run-Kompressor 53-62 dB(A) / 1-10 bar
- Präzise Druckhaltung ±0,1 bar
- Gefäß 200 5000 I

COMPRESSO CX

- Kompressoren-Druckhaltestation mit BrainCube-Connect-Steuerung bei externer Druckluftversorgung
- Modbus- und Ethernet-Kommunikation als Standard
- Präzise Druckhaltung ±0,1 bar
- Gefäß 200 5000 I

TRANSFERO TV

- Pumpendruckhaltung mit BrainCube-Connect-Steuerung
- Modbus- und Ethernet-Kommunikation als Standard
- Vakuumentgasung mit Cyclone-Technologie mit einer Kapazität von ~ 1m³/h
- Präzise Druckhaltung ±0,2 bar
- Modul zur automatischen Nachspeisung
- Gefäß 200 5000 I

TRANSFERO TVI

- Pumpendruckhaltung mit BrainCube-Connect-Steuerung
- Modbus- und Ethernet-Kommunikation als Standard
- Vakuumentgasung mit Cyclone-Technologie mit einer Kapazität von ~ 1m³/h
- Präzise Druckhaltung ±0,2 bar
- Modul zur automatischen Nachspeisung
- · Geeignet für Anlagen mit hohem statischem Druck
- Gefäß 200 5000 I

TRANSFERO TI

- Pumpendruckhaltung mit BrainCube-Connect-Steuerung
- Präzise Druckhaltung ±0,2 bar
- Geeignet für Anlagen mit hohem statischem Druck
- Geeignet für Hochtemperaturanlagen
- Fassungsvermögen Ausdehnungsgefäß 200 5000 I (auf Anfrage unbegrenzt erweiterbar)

Sicherheitsventile

Unter dem Markennamen IMI Pneumatex bietet IMI Hydronic Engineering hochwertige Komponenten zur Absicherung der Installation gegen übermäßigen Druckanstieg. Die Sicherheitsventile von IMI Pneumatex schützen sämtliche Systemkomponenten vor unzulässigem Überdruck.

IHRE VORTEILE

- Erfüllen die Anforderungen der EN ISO 4126-1:2013
- Auswahl aus verschiedenen Modellen entsprechend den Anforderungen des Anlagenbauers
- 5 Jahre Garantie

MERKMALE

C3 Sicherheitsventil					
Sichemensventil	Heizsysteme	Kühlsysteme	Solaranlagen	Druckbereich	Max. zulässiger Glykolgehalt
DSVH	✓			3,0 bar	30%
DSVDGH	✓	✓	✓	2,0 – 16 bar	50%
DSVSOL			✓	3,0 – 16 bar	50%
DSVF		✓		3,0 – 16 bar	100%

DSV..H SICHERHEITSVENTIL

- Federbelastet, von Hand anl\u00fcfbar, Federraum durch Membrane gesch\u00fctzt.
 Eintritt- und Austrittseite mit Innengewinde, Austrittseite vergr\u00f6\u00dfert.
- Vertikale Montage

DSV...DGH SICHERHEITSVENTIL

- Federbelastet, mit Hebel von Hand anlüftbar, Federraum durch Faltenbalg geschützt, gegendruckkompensiert.
- Eintritt- und Austrittseite mit Innengewinde, Austrittseite vergrößert.
- DN 15-50
- Vertikale Montage

DSV...DGH SICHERHEITSVENTIL

- Federbelastet, mit Hebel von Hand anlüftbar, Federraum durch Faltenbalg geschützt.
- Eintritt- und Austrittseite mit Flanschanschluss, Austrittseite vergrößert.
- DN 40-50
- Vertikale Montage

DSV...SOL SICHERHEITSVENTIL FÜR SOLARANLAGEN

- Federbelastet, von Hand anlüftbar, Federraum durch Membrane geschützt.
- Eintritt- und Austrittseite mit Innengewinde, Austrittseite vergrößert.
- · Vertikale Montage
- Die Ventile bestehen ganz aus Metall; sie können auch in Umgebungen mit hohen Temperaturen oder Strahlung installiert werden.
- Alle Materialien sind geeignet für Temperaturen bis 160 °C.
- TÜV-Prüfzertifikat 2013 SOL

DSV...F SICHERHEITSVENTIL

- Die Temperatur des Mediums bei atmosphärischem Druck darf nicht den Siedepunkt erreichen.
- Federbelastet, von Hand anlüftbar, Federraum durch Membrane geschützt.
- Eintritt- und Austrittseite mit Innengewinde.
- Vertikale Montage
- Die Ventile bestehen ganz aus Metall und k\u00f6nnen auch in Umgebungen mit hohen Temperaturen oder Strahlung installiert werden.
- Alle Materialien sind geeignet für Temperaturen bis 150°C.
- TÜV 293-F-Konformität.

WARUM IST LUFT-UND SCHMUTZ-ABSCHEIDUNG SO WICHTIG?

verursachen Systemausfälle und teure Reparaturen, hohe Betriebs- und Wartungskosten und damit eine

steigende Unzufriedenheit seitens der Nutzer und

Eine zuverlässig einwandfreie Wasserqualität in HLK-Anlagen sorgt für einen störungsfreien Betrieb, denn je weniger Verunreinigungen im Wasserkreislauf Korrosionsanfälligkeit des gesamten Systems sinkt und die Ausfallraten von Bauteilen können minimiert werden.

Eine effiziente Abscheidetechnik reduziert

Zeparo G-Force

Vento Connect VI

BESCHAFFENHEIT DES MEDIUMS

D1	P	Entlüfter, Schmutzabscheider und Entgasung	44
D2	wm —	Druckhalteüberwachung und Nachspeisesysteme	46

Luft- und Schmutzabscheider; Druckstufen – Vakuumentgaser

Zum Abscheiden von Gas und Schlamm bietet die Cyclone-Abscheidung die höchste Effizienz. Die Kombination mit Vakuum im selben Zyklus unserer Produktreihe Vento ermöglicht die Entfernung von mehr als 60 % der Luft aus den Systemmedien - diese Funktion bezeichnen wir als **VacuCyclonSplit**.

IHRE VORTEILE

- Effektive Abscheidung von Schlamm und Gas auf Basis der Cyclone-Abscheidung
- Abscheider mit Zulassung zur Montage in verschiedenen Positionen
- Vakuum-Entgasungsstationen mit Modbus- und Ethernet-Kommunikation als Standard

WICHTIGE TECHNISCHE PARAMETER

Automatische Entlüfter	Druckklasse	T _{max.} des Mediums	Durchmesser
Tutomaissine Emainer	bar	°C	DN
Zeparo ZUT	10	110	15, 20, 25
Zeparo ZUTS	10	160	15

D1 Zeparo - Abscheider	Druckklasse	T _{max.} der Flüssigkeit						Vn	om (m	³/h)					
Copare / Laconstati	bar	°C	20	25	32	40	50	65	80	100	125	150	200	250	300
Zeparo ZUV	10	110	1.0	1.6	3.3	4.5									
Zeparo ZUVS	10	160	1.0	1.6	3.3	4.5									
Zeparo Cyclone	10	120	1.18	1.47	3.50	4.75	6.88								
Zeparo G-Force	16 25	110 180						10	18	37	68	100	200	345	540
Zeparo ZIO	10	110					11	19	26	44	67	95	170	306	435

D1 Vento - Vakuum-Er	ntgasungsstation	Max. Betriebsdruck	T _{min/max} der Flüssigkeit	Stromversor- gung U, P	Abmessungen TecBox	TecBox Gewicht	P _{min} , P _{max}	Montageart
Tonto validani El	vonto valtami Emgasangostation		bar °C		mm	kg	bar	
Vento EcoEfficient	V 2.1 F	6	+0 / +70	230; 0,6	550x930x325	29	1.0 – 2.5	hängend
Vento Connect V	V 4.1 E (C) V 6.1 E (C) V 8.1 E (C) V 10.1 E (C) V 14.1 E (C)	10 10 10 10 10	+0 / +90	230; 0,75 230; 1,1 230; 1,4 230; 1,7 230; 1,7	500x920x530 500x920x530 500x920x530 500x1300x530 500x1300x530	38 40 41 57 67	1.0 - 2.5 1.5 - 3.5 2.0 - 4.5 3.5 - 6.5 5.5 - 10.0	stehend
Vento Connect VI	VI 19.1 E (C) VI 25.1 E (C)	16 25	+0 / +90	3x400V; 2,6 3x400V; 3,4	570x1086x601 570x1258x601	86 94	6,5 – 15,5 10,5 – 20,5	stehend

ANWENDUNGEN

| Statischer Druck 0 bar | Schlam | Magnet | Mag

Zeparo ZUT, ZUTS

- Große Abscheidekammer mit leckagefreier Funktion
- Zur statischen Entlüftung von Steigsträngen und Pufferspeichern
- Große Anschlussdurchmesser

Zeparo ZUV, ZUVS

- Helikoidal-Einsatz für eine effektive Abscheidung von Mikroblasen
- Ausgestattet mit ZUT Entlüfter mit leckagefreier Funktion
- Erhältlich von DN 20 40 mit Innengewinde

Zeparo Cyclone

- Cyclone-Abscheidetechnologie
- Geringer Fließwiderstand durch einzigartige Lösungen
- Abgetrennte Schlammfangkammer verhindert den Weitertransport von bereits abgeschiedenen Partikeln
- Korrosionsbeständiger Werkstoff; Gehäuse: Messing, Cyclone-Einsatz: PPS Ryton

Ferro Cleaner

- Magnetflussfiltersystem erfasst feinste Magnetitpartikel
- Lageunabhängiger Einbau
- Kompakte Abmessungen

Zeparo G-Force

- Cyclone-Abscheidetechnologie
- Abgetrennte Schlammfangkammer verhindert den Weitertransport von bereits abgeschiedenen Partikeln
- An horizontalen und vertikalen Rohrleitungen montierbar
- Entlüftung durch Installation des ZUTX Entlüfters

Zeparo ZIO

- Abscheidung von Schlamm und Luft
- · Abscheidung auf Basis von Partikeldichteunterschieden und Strömungsberuhigung
- Geringer Fließwiderstand

Vento V...F EcoEfficient

- Vakuumentgasung
- Kompakte Bauweise mit Wandmontage
- Optimal f
 ür Anlagen bis 10 m³

Vento Connect V, VI

- Druckstufen-Vakuumentgasung mit Cyclone-Technologie VacuCyclonSplit
- BrainCube-Connect-Steuerung
- Modbus- und Ethernet-Kommunikation als Standard
- ECO-Entgasungsfunktion (Überwachung des Gasgehaltes)
- Automatische Nachspeisung serienmäßig
- Erhältlich in Druckbereichen von 1 bis 20 bar

Druckhalteüberwachung und Nachspeisesysteme

Neben der Druckhaltung und Entlüftung muss als weiterer wichtiger Aspekt die Nachspeisung von Medien berücksichtigt werden, die während des Betriebs der Anlage verloren gehen.

IMI Hydronic bietet Nachspeisesysteme mit Enthärtung oder Entmineralisierung des Nachfüllwassers.

Die Nachspeisung erfolgt in einem kontrollierten Prozess mit strenger Überwachung der Nachfüllmengen sowie der Dauer und Häufigkeit des Nachfüllvorgangs - FillSafe.

IHRE VORTEILE

- Innovative BrainCube-Steuerung regelt und überwacht den Nachspeisevorgang
- Vielfältige Standard-Funktionen in einem Gerät

WICHTIGE TECHNISCHE PARAMETER

D2 Modul		PN	Tmin/max der Flüssigkeit	Stromversorgung U, P	Anmerkungen
		bar	°C	V, kW	
Pleno PX		10	0 / +65	230; 0,02	Kvs = 1,0
Pleno PIX Connect		10	0 / +65	230; 0,04	Kvs = 1,2
Pleno Pl x.x Connect	PI 9.1 F PI 9.1 PI 9.2	10	+0 / +30	230; 0,75	1-8 bar Pumpe
Pleno Refill	6000 12000 6000 filtr 12000 filtr	8	+5 / +45	-	Kompatibel mit Vento Connect und Pleno Connect
Pleno Refill	16000 36000 48000	8	+5 / +45	n.d	Kompatibel mit Transfero Connect

ANWENDUNGEN

								æ				HOSPI TAL	血		
D2 Modul	Nachfüllen	Enthär- tung	Regler	Eingebaute Pumpe	Volume measurement	Kleines Wohnhaus	Großes Wohnhaus	**	Supermarkt	Einkaufs- zentrum	Großes ge- werbliches Gebäude	Hospital	Hochhaus	Energiever- sorgungsan- lagen	Industriean- lagen
Pleno PX	/				/			/	/	✓	/	✓	/		
Pleno PIX Connect	✓		V		✓	/	✓	/	✓						
Pleno Pl x.x Connect	✓		V	✓	✓			/	-	√	/	V			
Pleno Refill (Enthärtung und/oder Entkalkung)		√				✓	✓	-	✓	✓	/	✓	✓	/	✓

Pleno PX

- Hydraulikeinheit
- Wassernachspeisung ohne Pumpen
- Wandmontage

Pleno PIX Connect

- Wassernachspeisung ohne Pumpen
- Steuereinheit TecBox BrainCube Connect
- Wandmontage

Pleno PI 9F Connect

- Wassernachspeisung mit Pumpe
- Steuereinheit TecBox BrainCube Connect
- Wandmontagehalterung integriert.

Pleno Pl 9.1, 9.2 Connect

- Wassernachspeisung mit Pumpen
- Steuereinheit TecBox BrainCube Connect
- Stehende Montage

Pleno Refill 6000 - 12000

- Kartusche f
 ür Entkalkung oder Demineralisierung
- Filterkartusche
- Wandmontage
- Kompatibel mit Pleno Connect, Pleno P Connect, Vento Connect

Pleno Refill 16000 - 48000

- Kartusche f
 ür Entkalkung oder Demineralisierung
- Filterkartusche
- Wandmontage
- Kompatibel mit Compresso Connect, Transfero Connect

Messwerkzeuge & Software

IHRE PROFESSIONELLE VERSICHERUNG

Die tatsächlichen Vorgänge in einem System zu beschreiben oder unerwartete Betriebsfehler in Zahlen auszudrücken, ist keine einfache Aufgabe. Das erfordert die richtigen, intelligenten Instrumente.

Die jahrelange Zusammenarbeit mit Ihnen an zahlreichen Projekten bietet für uns die beste Möglichkeit, Ihre Anforderungen vollständig zu verstehen.

Unsere Messcomputer wurden speziell entwickelt, um Ihnen Ihre Arbeit zu erleichtern und vor allem, um Ihnen Zeit und Geld zu sparen.

Wenn es Schwierigkeiten gibt, werden Sie nie allein damit sein. Sie können sich jederzeit auf unseren technischen Support verlassen, ganz egal, wo Sie sind und wie groß Ihr Projekt ist.

TA Link

HYDRONISCHE INSTRUMENTE

E1		Einregulierungscomputer	51
E2	11 2 3 = 1 0 bar 4	Differenzdruck-Messfühler	51
E 3		Software	52

www.imi-hydronic.de www.imi-hydronic.at www.imi-hydronic.ch

Einregulierungscomputer

TA-SCOPE mit DpS-Visio

- TA-SCOPE und DpS-Visio: Moderne Messinstrumente für optimale hydronische Einregulierung
- Neuer Differenzdruckfühler DpS-Visio: 15 % kleiner und kompakter als die Vorgänger-Version
- Einfacher Einregulierungsvorgang dank automatischer Spülung und Kalibrierung des Fühlers
- Datenanzeige per OLED-Display auf dem neuen Differenzdruckfühler DpS-Visio.
- Messungen in größeren Anlagen bis zu 500 kPa Differenzdruck möglich.
- Die Hochdruckversion (HP) ermöglicht die Differenzdruckmessung bis 1.000 kPa.
- TA-Wireless eine Einzelperson kann mit einem Messcomputer komplexe Systeme exakt einregulieren, wobei je Ventil nur eine Einstellung erforderlich ist.
- TA-Diagnostic erkennt Systemfehler; dadurch können Wartung, Fehlerbehebung und Berechnungen zum hydraulischen Abgleich in Bestandsanlagen einfach durchgeführt werden.
- Selbstdichtende Messnadeln mit integriertem Temperaturfühler für sichere, genaue Messungen.
 Die Leistungsfähigkeit von Heizungs- und Kühlungsanlagen wird durch präzises Messen und
 Datenaufzeichnung wesentlich verbessert.
- Die Systemleistung wird gesteigert mit einer präziseren Messung und einfacheren Protokollierung der Heiz-/Kühlleistung
- Präzise Diagnose mithilfe eigenständiger Datenerfassung mit einer Batterielaufzeit von bis zu 100 Tagen

elektronisch gesteuerte Spülung und Kalibrierung

Direkte Anzeige der Daten über ein OLED-Display

Zeit- und kostensparende Einregulierung mit nur 1 Person

Differenzdruck-Messfühler

TA Link

- Ermöglicht exakte Messung des Differenzdrucks
- Die entscheidende Verbindung zwischen dem hydronischen System und dem Gebäudeleittechniksystem (GLT)
- Max. Differenzdruck von 2 oder 5 bar, Messbereich 0 40 kPa oder 0 100 kPa
- Ausgangssignal 0 10 V oder 4 20 mA

Software

HySelect

HySelect ist eine Computersoftware, die:

- Ventile auswählt und die richtige Ventilgröße und -einstellung festlegt
- bei der Auswahl der passenden Art von Stellantrieben und des erhältlichen Zubehörs hilft
- Heiz- und Kühlsysteme berechnet, auch mit Gleichzeitigkeitsfaktoren
- unterschiedliche Einheiten umrechnet
- mit dem Einregulierungscomputer TA-SCOPE kommuniziert
- Hyselect Wizard für die schnelle Auslegung von Druckhaltestationen

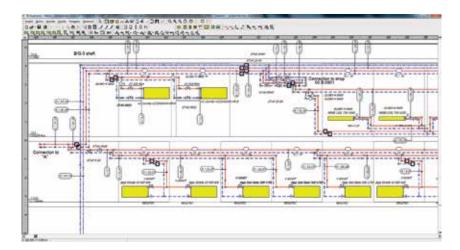
HyTools

HyTools ist eine App mit sehr vielen Möglichkeiten. Sie haben alle unsere Produkte, sowie die hydronischen Berechnungen auf Ihrem iPhone, IPad, IPad Touch oder Ihrem Android-Smartphone. HyTools bietet folgende Funktionen:

- Hydronische Berechnung: q-Kv-Dp; P-q-DT; q-Valve-Dp
- Zeparo-Dp-Berechnung
- Ventildimensionierung und -voreinstellung
- Abschätzung von Heizkörperleistungen (Stahl und Gusseisen)
- Dimensionierung und Voreinstellung von Thermostatventilen, Einregulierventilen, Dp-Reglern und Regelventilen
- Rohrdimensionierung
- Einheitsumrechnung
- Standortauswahl 24 Länder
- Sprachauswahl 16 Sprachen

Laden Sie HyTools jetzt aus dem Apple App Store oder von Google Play herunter. Mit HyTools ist alles, was Sie für komplexe hydronische Berechnungs benötigen, nur einen Tastendruck entfernt.

IMI Hecos


IMI Hecos ist ein vollständiges Computer-Grafikprogramm, mit dem Sie sparsame und effiziente auf Wasser basierende Heiz- und Kühlsysteme auf technisch einwandfreie Weise entwerfen können.

Damit fällt die Berechnung aller Bestandteile hydronischer Kreisläufe, wie Verbraucher, Ventile, Pumpen und Leitungen, ganz leicht.

Sie müssen nur das Gebäude, die Räume und die Temperatur beschreiben und festlegen, wie das System aussehen soll.

Im Gegenzug erhalten Sie die erforderliche Pumpenförderhöhe, detaillierte Auflistungen optimal dimensionierter Komponenten, das Wasservolumen des Systems zur Berechnung der Druckhalteanlagen, vollständige Systemspezifikationen und vor allen Dingen den Entwurf Ihrer vollständigen Anlage zum Ausdrucken oder Exportieren in ein CAD-Programm.

- Einfache Änderung der Berechnungsparameter und einfacher Abruf neuer Ergebnisse.
- Interaktive Kommunikation zwischen Entwurf und den Ergebnisblättern.
- Möglichkeit der Softwareanwendung für Einrohr-Heizkörpersysteme sowie als Umlenk-Rücklaufsystem.
- Gemeinsame Zeichnung für die Software, die das Heiz- und Kühlsysteme zeigt (z.B. 4-Rohr-Ventilatorkonvektorsystem).
- Glykolkorrektur.

HyTune

Anwendung für Smartphones zur digitalen Konfiguration von TA-Slider Stellantrieben.

- Einfache und intuitive Bedienung.
- Ermöglicht die Konfiguration auch unter schlechten Sichtbedingen auf Baustellen.
- Zusatzschutzvorrichtung gegen Bedienfehler
- Abrufen der letzten 10 Fehler sowie der Betriebsstatistiken

Anwendungen

Anwendungsübersicht

HEIZUNGSANLAGEN

Туре	Lösungen	Energieeffizienz	Investition	
F1 Variabler Durchfluss	Druckunabhängige Einregulier- und Regelventile	gering hoch	gering hoch	
F2 Variabler Durchfluss	Kombinierte Einregulier- und Regelventile	gering hoch	gering hoch	
F3 Variabler Durchfluss	Einregulier- und Standardregelventile	gering hoch	gering hoch	
F4 Variabler Durchfluss	Heizköperthermostatventile mit Voreinstellung	gering hoch	gering hoch	
F5 Variabler Durchfluss	AFC-Technologie (Automatische Durchflussregelung)	gering hoch	gering hoch	
(F6) Konstanter Durchfluss	Einregulier- und Standardregelventile	gering hoch	gering hoch	

KÜHLSYSTEME

Туре	Lösungen	Energieeffizienz	Investition	
F7 Variabler Durchfluss	Druckunabhängige Einregulier- und Regelventile	gering hoch	gering hoch	
F8 Variabler Durchfluss	Kombinierte Einregulier- und Regelventile	gering hoch	gering hoch	
F9 Variabler Durchfluss	Einregulier- und Standardregelventile	gering hoch	gering hoch	
F10 Variabler Durchfluss	Regelventile mit Rücklauftemperaturregler	gering hoch	gering hoch	
(F11) Konstanter Durchfluss	Einregulier- und Standardregelventile	gering hoch	gering hoch	

SPEZIALLÖSUNGEN

	Туре	Lösungen	Energieeffizienz	Investition
(F12)	Variabler Durchfluss	Automatische hydraulische Entkoppelungsschaltung bei variablen Durchflüssen	gering hoch	gering hoch
F13	Variabler Durchfluss	Zonenregelung	gering hoch	gering hoch
F14)	Variabler Durchfluss	4-Leiter Heiz- und Kühlsystem	gering hoch	gering hoch

Die Lösungsbeispiele zeigen die meistgenutzten Anwendungen in Heiz- und Kühlsystemen.

Es gibt zahlreiche Varianten, Kombinationen und einzigartige Lösungen, die den Rahmen dieser Broschüre sprengen würden. Jedes System weist bezüglich der Wärme- oder Kältequelle, der Regelungsart, der Investitionsbeschränkungen usw. seine eigenen Besonderheiten auf.

Sie können sich jederzeit an unsere Hydronik-Fachleute wenden, um Unterstützung bei der Auswahl der besten Lösung für Ihr Projekt zu erhalten.

Ihr Erfolg ist die größte Belohnung für unsere tägliche Arbeit.

Heizsystem – variabler Durchfluss

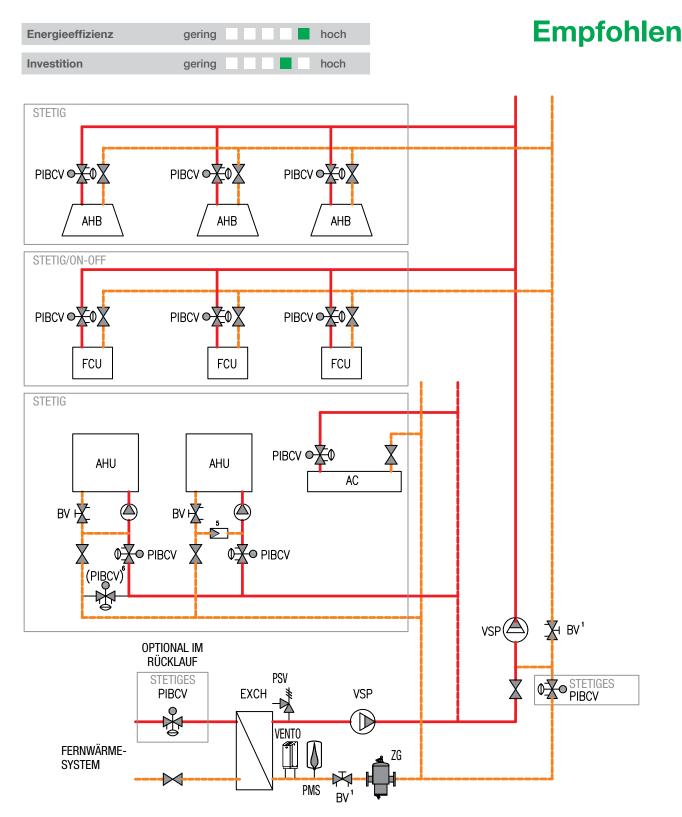
Druckunabhängige Einregulier- und Regelventile

ENERGIEEFFIZIENZ

- Bietet stabile und präzise Temperaturregelung unter sämtlichen Betriebsbedingungen.
- Druckunabhängige Regelung mit hoher Regelautorität für stetige/3-Punkt-Regelung.
- Geringer Pumpenenergieverbrauch (kein zu hoher Durchfluss).
- Sehr geringer Druckverlust der IMI TA-Ventile verringert den Bedarf an Pumpenförderhöhe.
- Optimierung der Pumpenförderhöhe dank einzigartiger Diagnosefunktionen möglich.
- Minimaler Wärmeverlust in den Rücklaufleitungen.

INVESTITION

- Lösung mit kleinstmöglicher Anzahl an installierten Ventilen.
- Günstigere Stellantriebe können verwendet werden (geringer Schließdruck erforderlich).
- Ausgezeichnete Mess- und Diagnosefähigkeiten der IMI TA-Ventile erlauben eine vollständige Systemdiagnose ohne zusätzliche Ausgaben für weitere Einbauteile.
- Rasche Rentabilität (Spitzenqualität, extreme Langlebigkeit, hohe Energieeinsparungen).
- Hohe Flexibilität. Das Heizungssystem kann stufenweise aufgebaut oder erweitert werden, ohne dass eine neuerliche hydraulische Einregulierung erforderlich wird. Es wird nur die Einstellung der Umwälzpumpe an die neuen Systemanforderungen angepasst - FERTIG.


DIMENSIONIERUNG

- Einfache Ventildimensionierung entsprechend dem Nenndurchfluss.
- Hydronische Berechnung auf Grundlage des am Referenzventil erforderlichen Mindestdifferenzdrucks sowie des Druckverlusts des Systems unter Nennbedingungen.
- Prüfen der Regelventilautorität nicht erforderlich.
- Einfache Auswahl des geeigneten Stellantriebs.
- HySelect und IMI Hecos Software unterstützen Sie bei den hydronischen Berechnungen.

INBETRIEBNAHME

- Einfache Voreinstellung des maximalen Durchflusses an jedem Ventil.
- Direkte Messung des tatsächlichen Durchflusses und des verfügbaren Differenzdrucks unterstützt Sie bei der Einstellung der erforderlichen Mindestpumpenförderhöhe zur Erzielung größtmöglicher Energieeffizienz.
- Die hervorragenden Diagnosefähigkeiten der IMI TA-Ventile erleichtern mittels TA-SCOPE das Erkennen und Lösen aller möglichen Systemfehler.

SIEHE AU	СН		
A1 🕌	PIBCV	Druckunabhängige Einregulier- und Regelventile	Seite 7
B1 ⋉	BV	Einregulierventile	Seite 26
C1 (EV	Ausdehnungsgefäße	Seite 37
C3 -\$	PSV	Sicherheitsventile	Seite 41
01 🖟	ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44

- 1) Empfohlen zur Durchflussmessung und Systemdiagnose
- Rückschlagventil wird empfohlen, um AHU bei Ausfall der Sekundärpumpe vor dem Einfrieren zu schützen
- Optional/empfohlen zur Strangwarmhaltung (mit oder ohne Stellantrieb, öffnet sich, wenn AHU-Regelventil vollständig geschlossen ist)

Legende:

AC Torluftschleier AHB Deckenstrahlplatten AHU Lüftungs-/Klimaanlage Einregulierventil BV **EXCH** Wärmetauscher FCU **PIBCV** Druckunabhängiges Einregulier- und Regelventil

PMS

Druckhaltesystem: Druckhaltung und Nachspeisung

PSV Sicherheitsventil

Entgaser (nicht erforderlich für Transfero Connect PMS, da hier die Vakuumentgasung bereits integriert ist) **VENTO**

Pumpe mit Drehzahlregelung

VSP ZGSchlammabscheider

Heizsystem – variabler Durchfluss

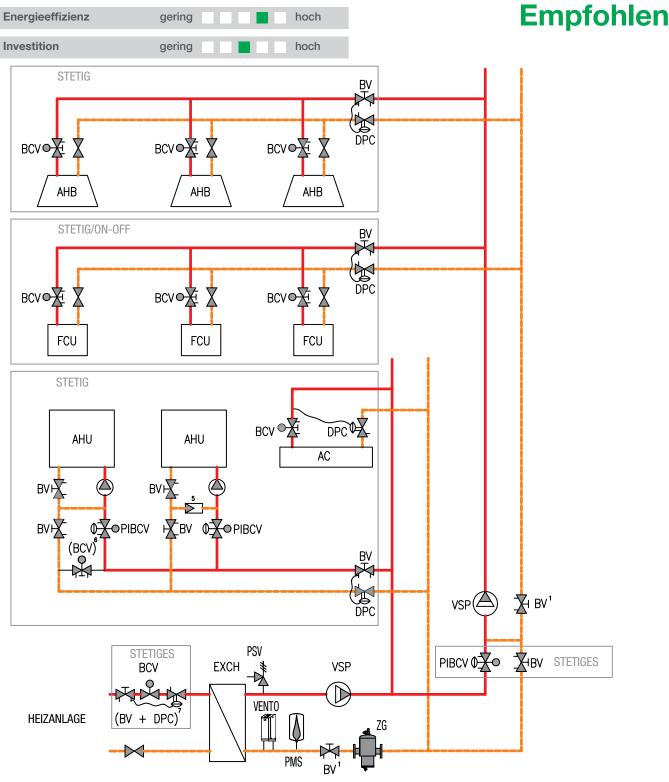
Kombinierte Einregulier- und Regelventile

ENERGIEEFFIZIENZ

- Bietet stabile und präzise Temperaturregelung unter sämtlichen Betriebsbedingungen.
- Differenzdruckregler an Abzweigen unterstützen die Stabilisierung der Arbeitsbedingungen für stetige Regelventile und gewährleisten gute Regelautorität.
- Geringer Pumpenenergieverbrauch.
- Optimierung der Pumpenförderhöhe dank einzigartiger Ventildiagnosefunktionen möglich.
- Minimaler Wärmeverlust in den Rücklaufleitungen.
- Unter bestimmten Betriebssituationen kann es durch On/Off Regelung im Teillastfall zu überhöhten Durchflüssen kommen. Dies kann aber durch die richtige Projektberechnung begrenzt werden.

INVESTITION

- Empfohlene Lösung mit guter Bilanz zwischen Energieeffizienz und Investition.
- Je nach Systemstruktur ist diese Lösung normalerweise im Vergleich zu E1 günstiger, obwohl einige Einregulierventile und Differenzdrücke an Abzweigen erforderlich sind.
- Ausgezeichnete Mess- und Diagnosefähigkeiten der IMI TA-Ventile erlauben eine vollständige Systemdiagnose ohne zusätzliche Ausgaben für weitere Einbauteile.
- Rasche Rentabilität (üblicherweise kosteneffektive Lösung, Spitzenprodukte, extreme Langlebigkeit).
- Hohe Flexibilität. Das Heizungssystem kann stufenweise aufgebaut oder erweitert werden, ohne dass eine neuerliche hydraulische Einregulierung erforderlich wird.


DIMENSIONIERUNG

- Dimensionierung des Ventils entsprechend dem Nenndurchfluss und minimalem Druckverlust (1/3 des Gesamtdruckverlust des Abzweigs ohne Regelventile bei Regelung über Δp-Regler) für gute Regelautorität.
- Der Schließdruck der Stellantriebe muss kontrolliert werden
- Wir empfehlen die Verwendung druckunabhängiger Einregulier- und Regelventile für einzelne Empfänger, die direkt an die Busleitung angeschlossen sind, um hohe Regelautorität zu gewährleisten und zu hohen Durchfluss zu begrenzen
- HySelect und IMI Hecos Software unterstützen Sie bei den hydronischen Berechnungen.

INBETRIEBNAHME

- Voreinstellung der Ventile nach hydraulischen Berechnungen mit der Option kleiner Korrekturen vor Ort
- Direkte Messung des tatsächlichen Durchflusses und des verfügbaren Differenzdrucks ermöglicht die exakte Berechnung der erforderlichen Mindestpumpenförderhöhe
- Durchflussmessung bei einzelnen kleinen Regelventilen an Abzweigen ist möglich, jedoch nicht zwingend erforderlich.
- Die hervorragenden Diagnosefähigkeiten der IMI TA-Ventile erleichtern mittels TA-SCOPE das Erkennen und Lösen aller möglichen Systemfehler.

SIEHE AU	CH		
A2 🙀	BCV	Kombinierte Einregulier- und Regelventile	Seite 9
B1 🔀	BV	Einregulierventile	Seite 26
B4 🖟	DPC	Differenzdruckregler	Seite 31
C1 (EV	Ausdehnungsgefäße	Seite 37
C3 -\$\frac{1}{2}	PSV	Sicherheitsventile	Seite 41
D1 🖟	ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44

- 1 Empfohlen zur Durchflussmessung und Systemdiagnose
- 5) Rückschlagventil wird empfohlen, um AHU bei Ausfall der Sekundärpumpe vor dem Einfrieren zu schützen
- 6) Optional/empfohlen, um Warmwasser in der Zuleitung zu halten (mit oder ohne Stellantrieb, öffnet sich, wenn AHU-Regelventil vollständig geschlossen ist)
- 7) Dp-Regelung empfohlen, falls Regelventilautorität bei Systembetrieb wegen bedeutender Änderungen des Differenzdrucks unter 0,25 sinken kann.

Legende:

Druckhaltesystem: Druckhaltung und Nachspeisung AC Torluftschleier **PMS AHB** Deckenstrahlplatten PSV Sicherheitsventil AHU Lüftungs-/Klimaanlage **VENTO** Entgaser (nicht erforderlich für Transfero Connect PMS, **BCV** Kombiniertes Einregulier- und Regelventil da hier die Vakuumentgasung bereits integriert ist) BV Einregulierventil **VSP** Pumpe mit Drehzahlregelung Differenzdruckregler DPC ZG Schlammabscheider **FCU** FanCoils

Heizsystem – variabler Durchfluss

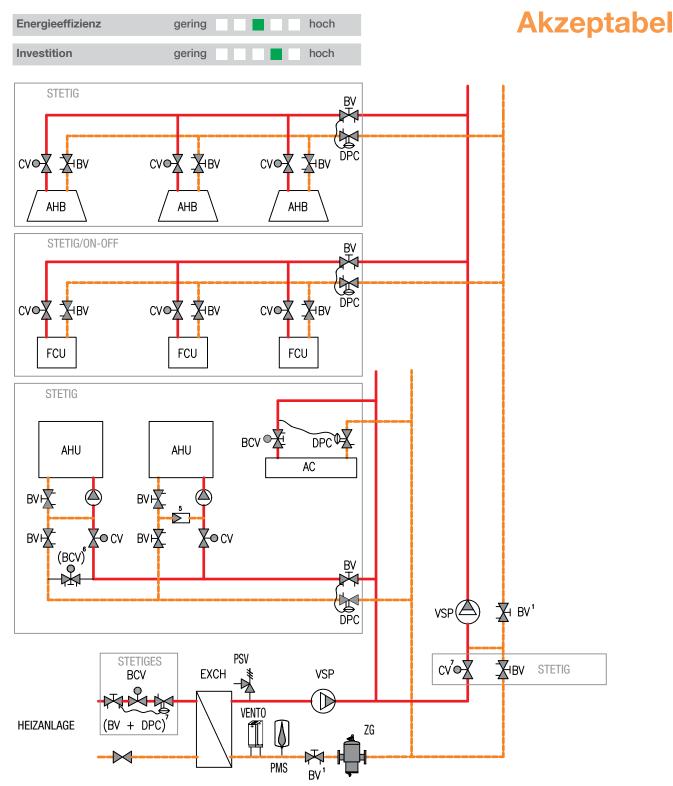
Einregulier- und Standardregelventile

ENERGIEEFFIZIENZ

- Ermöglicht unter allen Betriebsbedingungen stabile und präzise Temperaturregelung, wenn die Regelventile richtig dimensioniert sind und der Differenzdruck stabilisiert ist.
- Differenzdruckregler an Abzweigen unterstützen die Stabilisierung der Druckbedingungen für stetige Ventile und gewährleisten gute Regelautorität.
- · Geringer Pumpenenergieverbrauch.
- Minimaler Wärmeverlust in den Rücklaufleitungen.
- Pumpenförderhöhenoptimierung möglich.

INVESTITION

- · Höhere Investition im Vergleich zu Lösung F2, Installation eigenständiger Einregulierventile.
- Größere Durchflüsse erfordern größere Einregulierventile und ∆p-Regler an Abzweigen (TA-PILOT-R hilft, die Investitionskosten zu senken).
- Einzigartige Mess- und Diagnosefunktionen der IMI TA-Ventile garantieren minimalen Energieverbrauch und die korrekte Einstellung aller Systemkomponenten.
- Hohe Flexibilität. Das Heizungssystem kann stufenweise aufgebaut oder erweitert werden. Es wird empfohlen, die Einregulierventile und Differenzdruckregler der Abzweige einzustellen, um eine gegenseitige Beeinflussung zu verhindern.


DIMENSIONIERUNG

- Dimensionierung des Regelventils entsprechend dem Nenndurchfluss und minimalen Druckverlust (1/3 des Gesamtdruckverlust des Abzweigs ohne Regelventile bei Regelung über Δp-Regler) zur Gewährleistung guter Regelautorität.
- Schließdruck für Stellantrieb muss geprüft werden.
- HySelect und IMI Hecos Software unterstützen Sie bei den hydronischen Berechnungen.

INBETRIEBNAHME

- Einfache Voreinstellung aller Einregulierventile und Δp-Regler abhängig von der hydronischen Berechnung.
- Δp-Regler sollten entsprechend des tatsächlich erforderlichen Druckverlustes des Abzweigs eingestellt werden.
- Nutzen Sie IMI TA-Einreguliermethoden, um den optimalen Sollwert der Pumpe festzustellen.
- Die hervorragenden Diagnosefähigkeiten der IMI TA-Ventile erleichtern mittels TA-SCOPE das Erkennen und Lösen aller möglichen Systemfehler.

SIEHE AUC	Н		
A5	CV	2-Wege-Regelventile	Seite 21
B1 ∤	BV	Einregulierventile	Seite 26
B4 🙀	DPC	Differenzdruckregler	Seite 31
C1 (EV	Ausdehnungsgefäße	Seite 37
C3 →	PSV	Sicherheitsventile	Seite 41
D1 🖟	ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44

- 1) Empfohlen zur Durchflussmessung und Systemdiagnose
- 5) Rückschlagventil wird empfohlen, um AHU bei Ausfall der Sekundärpumpe vor dem Einfrieren zu schützen
- Optional/empfohlen, um Warmwasser in der Zuleitung zu halten (mit oder ohne Stellantrieb, öffnet sich, wenn AHU-Regelventil vollständig geschlossen ist)
- 7) Dp-Regelung empfohlen, falls Regelventilautorität bei Systembetrieb wegen bedeutender Änderungen des Differenzdrucks unter 0,25 sinken kann.

Legende:

AC	Torluftschleier	FCU	FanCoils
AHB	Deckenstrahlplatten	PMS	Druckhaltesystem:
AHU	Lüftungs/Klimaanlage		Druckhaltung und Nachspeisung
BCV	Kombiniertes Einregulier- und Regelventil	PSV	Sicherheitsventil
BV	Einregulierventil	VENTO	Entgaser (nicht erforderlich für Transfero Connect PMS, da hier die Vakuumentgasung bereits integriert ist)
CV	2-Wege-Regelventil	VSP	Pumpe mit Drehzahlregelung
DPC	Differenzdruckregler		
EXCH	Wärmetauscher	ZG	Schlammabscheider

Heizsystem – variabler Durchfluss

Heizköperthermostatventile mit Voreinstellung

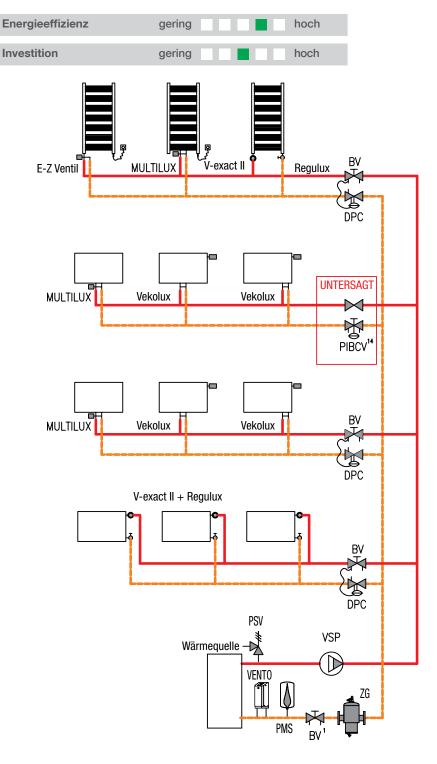
ENERGIEEFFIZIENZ

- Gewährleistet die richtige Raumtemperatur und hohes Energieeinsparpotential.
- Drehzahlgeregelte Pumpe und Differenzdruckregler helfen die Differenzdruckverhältnisse zu stabilisieren und innerhalb der zulässigen Betriebsgrenzen der Thermostatventile zu halten, um eine geringe Temperaturhysterese und einen geräuscharmen Betrieb zu gewährleisten.
- Geringer Pumpenenergieverbrauch (Proportionalregelung empfohlen).
- Minimaler Wärmeverlust in den Rücklaufleitungen.
- Niedrige Rücklauftemperatur verbessert Energieeffizienz von Wärmepumpen oder Brennwertgeräten

INVESTITION

- · Geringe Investition mit rascher Rendite.
- Langlebige Spitzenqualität.
- Verschraubungen sparen bei Sanierungen durch das Absperren von Heizkörpern Kosten ein, ohne dass das gesamte Heizsystem entleert werden und der Heizvorgang unterbrochen werden muss (weniger Korrosion im System, mehr Komfort).
- Einregulierventile und Δp-Regler mit hervorragenden Mess- und Diagnosefähigkeiten helfen bei der Einstellung der Pumpenförderhöhe und beim Ermitteln möglicher Systemfehler.
- Hohe Flexibilität. Das Heizungssystem kann stufenweise aufgebaut oder erweitert werden

DIMENSIONIERUNG


- Dimensionierung der Thermostatventile entsprechend der Regeldifferenz zwischen 1 2 K unter Berücksichtigung des maximal empfohlenen Druckverlusts.
- In großen Systemen werden Einregulierventile und Δp-Regler für einen geräuscharmen, hocheffizienten Betrieb empfohlen.
- Umfangreiches Portfolio an IMI Heimeier-Produkten bietet eine optimale Lösung für jede Art von Heizkörper oder Fußbodenheizung.
- HINWEIS: In Systemen mit Thermostatventilen ist der Einsatz druckunabhängiger Einregulier- und Regelventile nicht empfohlen. Sie begrenzen nur den maximalen Durchfluss, steigern die Pumpenförderhöhe und bleiben aufgrund ihres Diversitätsfaktors den Großteil der Heizsaison geöffnet.
- HySelect und IMI Hecos Software unterstützen Sie bei den hydronischen Berechnungen.

INBETRIEBNAHME

- Einfache Voreinstellung der Thermostatventile, Einregulierventile und Δp -Regler entsprechend der hydronischen Berechnung.
- Direkte Messung des tatsächlichen Durchflusses und des verfügbaren Differenzdrucks zur genauen Einstellung der erforderlichen Pumpenförderhöhe zur Sicherstellung eines geräuscharmen, energieeffizienten Betriebs.
- Es wird empfohlen, die max. zulässige Raumtemperatur am Thermostatkopf jedes Raumes zu begrenzen, um ein Überheizen zu verhindern. Ein vollständig geöffneter Thermostatkopf verschwendet Energie! Beim Thermostat-Kopf B kann die Begrenzung festgesetzt werden.

SIEHE AUCH M Einregulierventile Seite 26 Å **DPC** Seite 31 Differenzdruckrealer C1 FV Ausdehnungsgefäße Seite 37 **PSV** Sicherheitsventile Seite 41 Å ZG Entlüfter, Schmutzabscheider und Entgasung Seite 44

Empfohlen

Empfohlen zur Durchflussmessung und Systemdiagnose.

Zwei-Punkt-Anschluss

Druckhaltesystem:

PIBCV (ohne Antrieb) begrenzt nur Maximalstrom, wenn alle Thermostatventile geöffnet sind. In Teillast bleibt PIBCV völlig offen. Sein Druckverlust erhöht die Gesamtförderhöhe, die Geräusche im Teillastbereich erzeugt.

Legende:

PIBCV

PMS

BV Einregulierventile Druckhaltung und Nachspeisung

V-exact II Heizköperthermostatventil mit Voreinstellung **PSV** Sicherheitsventil

DPC Differenzdruckregler REGULUX Heizkörperverschraubung

Heizköperthermostatventil mit Voreinstellung für VEKOLUX Heizkörperverschraubung für Zwei-Punkt-Anschluss E-Z Ein-Punkt-Anschluss **VENTO** Entgaser (nicht erforderlich für Transfero Connect PMS, MULTILUX Heizköperthermostatventil mit Voreinstellung für

da hier die Vakuumentgasung bereits integriert ist)

VSP Drehzahlgeregelte Pumpe Druckunabhängige Einregulier- und Regelventile ZG Schlammabscheider

63

Heizsystem – variabler Durchfluss

AFC-Technologie (Automatische Durchflussregelung)

ENERGIEEFFIZIENZ

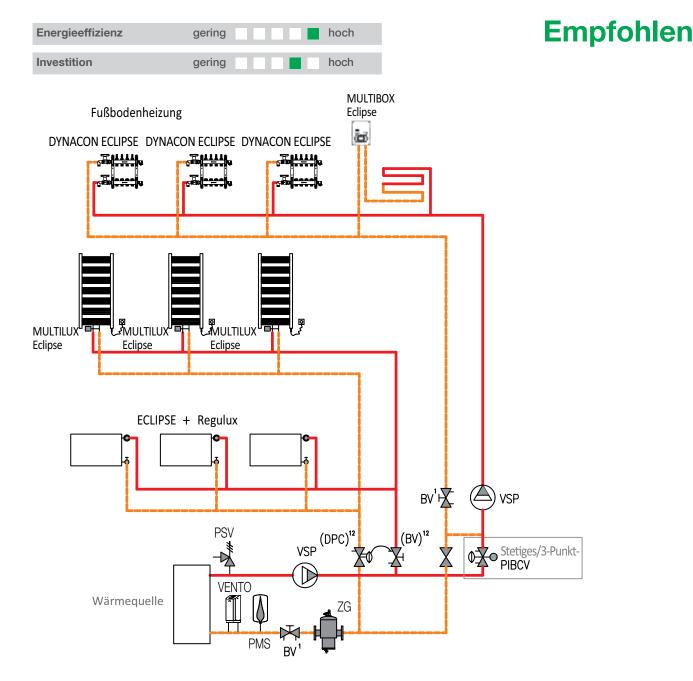
- Die richtige Raumtemperatur unter allen Betriebsbedingungen.
- · Automatische Durchflussregelung begrenzt zu hohen Durchfluss und hilft Unterversorgung zu vermeiden.
- Geringer Pumpenenergieverbrauch.
- Differenzdruckregelung ist erforderlich, wenn der maximal für die AFC-Technologie verfügbare Differenzdruck überschritten werden kann.
- Minimaler Wärmeverlust in den Rücklaufleitungen.
- Niedrige Rücklauftemperatur verbessert Energieeffizienz der Wärmepumpen und Kondensationskessel

INVESTITION

- Die geringfügig höhere Investition wird durch sehr hohe Energieeffizienz, Systemzuverlässigkeit, rasche Rentabilität und die einfache Montage und Inbetriebnahme ausgeglichen.
- Einwandfreie Funktion aller Heizkörper und Fußbodenheizungen ohne Reklamationen oder zusätzliche Servicekosten.
- · Geräuscharmer Betrieb.
- Ideale Lösung für Sanierungen sofortige Verbesserung der Systemleistung.
- Hohe Flexibilität. Die Anlagengröße kann ohne Beeinträchtigung der Regelqualität erweitert oder reduziert werden.

DIMENSIONIERUNG

- Einfache Anpassung der AFC-Komponenten entsprechend dem maximalen Durchfluss.
- Der maximal zulässige Differenzdruck muss eingehalten werden.
- Ideale Lösung zur Sanierung von Gebäuden mit in den Wänden/Böden usw. verlegten Leitungen. Vereinfachte hydronische Berechnung möglich
- HySelect und IMI Hecos Software unterstützen Sie bei den hydronischen Berechnungen.


INBETRIEBNAHME

- Einfache Voreinstellung des maximalen Durchflusses.
- · Automatische hydraulische Einregulierung.
- Pumpenförderhöhe kann entsprechend dem maximalen Durchfluss voreingestellt werden, Proportionalregelung empfohlen.
- AFC-Ventileinsatz kann, falls erforderlich, mit Spezialwerkzeug unter Systemdruck ausgebaut werden. Die Messung des anstehenden Differenzdruckes ist möglich.

SIEHE	E AUC	H		
A3	%	PIBCV	Druckunabhängige Einregulier- und Regelventile	Seite 11
B1	×	BV	Einregulierventile	Seite 26
B4	Å	DPC	Differenzdruckregler	Seite 31
C1		EV	Ausdehnungsgefäße	Seite 37
C 3	-\$	PSV	Sicherheitsventile	Seite 41
D1	ф	ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44

Weitere Informationen zu den Vorteilen der AFC-Technologie finden Sie auf der Website www.imi-hydronic.de.

- 1) Empfohlen zur Durchflussmessung und Systemdiagnose
- 12) Dp-Regler nur erforderlich, falls der verfügbare Differenzdruck höher ist, als der maximale Differenzdruck der AFC-Technologie..

Legende:

Einregulierventil BV

DYNACON Fußbodenheizkreisverteiler mit AFC-Technologie **ECLIPSE** Heizköperthermostatventil mit AFC-Technologie **MULTIBOX**

Eclipse Fußbodenheizungsregelung mit AFC-Technologie MULTILUX **ECLIPSE**

Heizköperthermostatventil mit Voreinstellung für Zwei-Punkt-Anschluss mit AFC-Technologie

PIBCV Druckunabhängiges Einregulier- und Regelventil **PMS**

Druckhaltesystem: Druckhaltung und Nachspeisung

PSV Sicherheitsventil

REGULUX Heizkörperverschraubung

VENTO Entgaser (nicht erforderlich für Transfero Connect PMS,

da hier diè Vakuumentgasung bereits integriert ist)

Drehzahlgeregelte Pumpe **VSP** ZG Schlammabscheider

Heizsystem – konstanter Durchfluss

Einregulier- und Standardregelventile

ENERGIEEFFIZIENZ

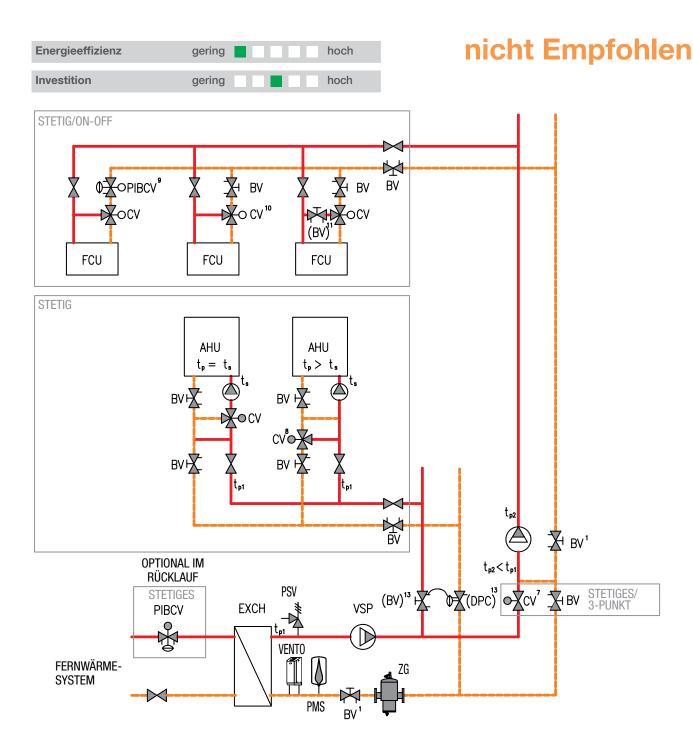
- Hohe Regelstabilität dank stabilem Differenzdruck im gesamten System.
- Hoher Pumpenenergieverbrauch, konstanter Durchfluss und Druckverlust des Systems.
- Hoher Wärmeverlust in Rücklaufleitungen bei Teillast.
- Hohe Rücklauftemperaturen verhindern im Teillastbetrieb die Effizienz von Wärmepumpen, Brennwertgeräten oder Fernwärmesystemen.
- Verschmutzte Filter und zu hoher Durchfluss steigern die jährlichen Betriebskosten erheblich.

INVESTITION

- Hohe Anzahl installierter Ventile.
- Keine Möglichkeit, einen Gleichzeitigkeitsfaktor anzuwenden, um damit die Rohrdimensionen zu reduzieren.
- Längere Amortisationszeit der hoch effizienten Pumpen mit variabler Geschwindigkeit.
- Konstante Belastung verringert die Lebensdauer der Pumpen.

DIMENSIONIERUNG

- Hydronische Berechnung ist für die 3-Wege- und die Einregulierventile erforderlich.
- Für eine gute Regelautorität eines 3-Wege-Ventils ist der korrekte kvs-Wert von entscheidender Bedeutung.
- 3-Wege-Ventile zur Regelung kleiner Verbraucher erfordern einen geringeren kvs-Wert in Richtung AB-B oder ein zusätzliches Einregulierventil zur Begrenzung eines zu hohen Durchflusses im Bypass bei Teillast oder vollständig geschlossenem Ventil.
- HySelect und IMI Hecos Software unterstützen Sie bei den hydronischen Berechnungen.


INBETRIEBNAHME

...

- Voreinstellung der Ventile nach hydraulischen Berechnungen mit optionaler Korrektur gemäß Messung am Objekt
- Einstellung der Pumpenförderhöhe zur Erzielung des konstanten Nenndurchflusses, konstante Geschwindigkeit ist zwingend erforderlich.
- Bei der Inbetriebnahme muss unbedingt die Kompatibilität zwischen dem primären und sekundären Durchfluss der AHU geprüft werden. Wenn die primäre und die sekundäre Temperatur gleich groß sein müssen, sollte der Primärdurchfluss um ca. 5% höher als der Sekundärdurchfluss sein.

= AUC	Н		
○ }	PIBCV	Druckunabhängige Einregulier- und Regelventile	Seite 11
	CV	2-Wege-Regelventile	Seite 21
⋈	BV	3-Wege-Regelventile	Seite 26
	DPC	Differenzdruckregler	Seite 31
	EV	Ausdehnungsgefäße	Seite 37
-\$	PSV	Sicherheitsventile	Seite 41
ф	ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44
		CV BV DPC EV PSV	PIBCV Druckunabhängige Einregulier- und Regelventile CV 2-Wege-Regelventile BV 3-Wege-Regelventile DPC Differenzdruckregler EV Ausdehnungsgefäße PSV Sicherheitsventile

- 1) Empfohlen zur Durchflussmessung und Systemdiagnose.
- Dp-Regelung empfohlen, falls Regelventilautorität während des Systembetriebs aufgrund bedeutender Druckänderungen unter 0,25 7) sinken kann.
- Ist der Temperaturunterschied im primären Kreislauf höher, so kann das 3-Wege-Ventil an dieser Stelle kleiner sein.
- 3-Wege ohne verringerten kvs-Wert in Richtung B-AB ohne Möglichkeit zur Einregulierung der Nebenleitung, PIBCV ohne Stellantrieb wird zur Begrenzung des maximalen Durchflusses empfohlen.
- 10) 3-Wege mit verringertem Kv-Wert in Richtung B-AB.
- 11) Zum Einregulieren der Bypassleitung um den selben Druckverlust wie über das Lüftungsregister zu erreichen.
- 13) Empfohlene Differenzdruckregelung um den erforderlichen richtigen Differenzdruck für den Abgang bereitzustellen.

Legende:

AHU Lüftungs-/Klimaanlage BV Einregulierventil CV 2-Wege-Regelventil Wärmetauscher **EXCH FCU FanCoils**

PIBCV Druckunabhängiges Einregulier- und Regelventil **PMS**

Druckhaltesystem: Druckhaltung und Nachspeisung

PSV Sicherheitsventil

Entgaser (nicht erforderlich für Transfero Connect PMS, **VENTO** da hier diè Vakuumentgasung bereits integriert ist)

VSP Pumpe mit Drehzahlregelung

ZG Schlammabscheider

Kühlsystem – variabler Durchfluss

Druckunabhängige Einregulier- und Regelventile

ENERGIEEFFIZIENZ

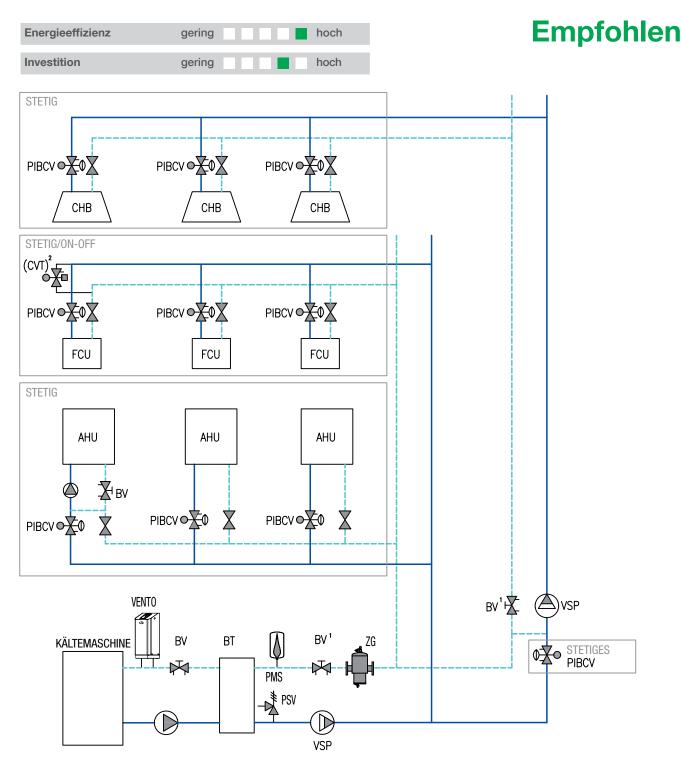
- Bietet stabile und präzise Temperaturregelung unter sämtlichen Betriebsbedingungen.
- Druckunabhängige Regelung mit hoher Regelautorität für stetige/3-Punkt-Regelung.
- Geringer Pumpenenergieverbrauch (kein zu hoher Durchfluss).
- Sehr geringer Druckverlust der IMI TA-Ventile verringert den Bedarf an Pumpenförderhöhe.
- Pumpenförderhöhenoptimierung dank einzigartiger Diagnosefunktionen der IMI TA-Ventile.
- Minimale Wärmeeinträge in den Rücklaufleitungen.
- Minimiertes Risiko von zu niedriger Rücklauftemperatur, keine Wirkungsgradreduktion der Kältemaschine.

INVESTITION

- Empfohlene Lösung mit minimaler Anzahl von Ventilen in der Installation.
- Ausgezeichnete Mess- und Diagnosefähigkeiten der IMI TA-Ventile erlauben eine vollständige Systemdiagnose ohne zusätzliche Ausgaben für weitere Geräte.
- Rasche Rentabilität, normalerweise in weniger als 3 Jahren.
- Hohe Flexibilität erlaubt es, das System schrittweise zu erweitern oder zukünftig weitere Verbrauchsgeräte ohne hydraulische Einregulierung hinzuzufügen, Pumpenförderhöhe sollte optimiert werden.

DIMENSIONIERUNG

- Einfache Ventilauswahl durch erforderlichen Maximaldurchfluss.
- · Auswahl durchflussbasierter Einstellungen ohne Notwendigkeit vollständiger hydraulischer Berechnungen
- Prüfen der Regelventilautorität nicht erforderlich.
- Einfache Auswahl des geeigneten Stellantriebs.
- Umfassende Auswahl an Ventilen für eine große Variabilität bei den Durchflüssen.
- HySelect und IMI Hecos Software unterstützen Sie bei den hydronischen Berechnungen.


INBETRIEBNAHME

.....

- Einfache Voreinstellung des maximalen Durchflusses an jedem Ventil.
- Direkte Messung des tatsächlichen Durchflusses und des verfügbaren Differenzdrucks zur genauen Einstellung der erforderlichen Pumpenförderhöhe zur Sicherstellung eines geräuscharmen, energieeffizienten Betriebs.
- Die hervorragenden Diagnosefähigkeiten der IMI TA-Ventile erleichtern mittels TA-SCOPE das Erkennen und Lösen aller möglichen Systemfehler

UCH		
PIBCV	Druckunabhängige Einregulier- und Regelventile	Seite 11
BV	Einregulierventile	Seite 26
CVT	Regelventil mit Rücklauftemperatur-Regler TA-COMPACT-T	Seite 9
EV	Ausdehnungsgefäße	Seite 37
PSV	Sicherheitsventile	Seite 41
ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44
	BV CVT EV PSV	PIBCV Druckunabhängige Einregulier- und Regelventile BV Einregulierventile CVT Regelventil mit Rücklauftemperatur-Regler TA-COMPACT-T EV Ausdehnungsgefäße PSV Sicherheitsventile

- 1) Empfohlen zur Durchflussmessung und Systemdiagnose
- Optional, um erforderlichenfalls das Wasser in der Zuleitung konstant kalt zu halten. TA-COMPACT-T, Einstellung 2K über Vorlauftemperatur.

HINWEIS: max. Differenzdruck 2 bar

Legende:

AHU Druckunabhängiges Einregulier- und Regelventil Lüftungs-/Klimaanlage **PIBCV** Pufferspeicher zur hydraulischen Entkopplung Druckhaltesystem: BT **PMS** Druckhaltung und Nachspeisung BVEinregulierventil **PSV** Sicherheitsventil **CHB** Deckenkühlgeräte Entgaser (nicht erforderlich für Transfero Connect PMS, **VENTO** CVT Regelventil mit Rücklauftemperatur-Regler da hier die Vakuumentgasung bereits integriert ist) TA-COMPACT-T **VSP** Pumpe mit Drehzahlregelung EV Ausdehnungsgefäß ZG Schlammabscheider **FCU** FanCoilsl

Kühlsystem – variabler Durchfluss

Kombinierte Einregulier- und Regelventile

ENERGIEEFFIZIENZ

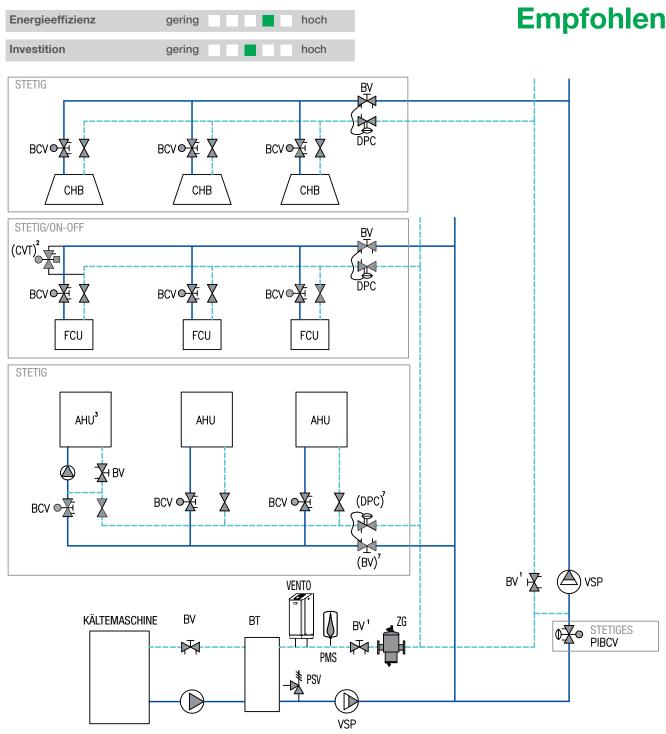
- Bietet stabile und präzise Temperaturregelung unter sämtlichen Betriebsbedingungen.
- Differenzdruckregler in den Abzweigen unterstützen die Stabilisierung der Druckbedingungen die stetigen Regelventile und gewährleisten gute Regelautorität.
- Geringer Pumpenenergieverbrauch.
- Optimierung der Pumpenförderhöhe möglich dank einzigartiger Ventildiagnosefunktionen.
- Minimale Wärmeeinträge in den Rücklaufleitungen.
- Minimiertes Risiko von zu niedriger Rücklauftemperatur, keine Wirkungsgradreduktion der Kältemaschine

INVESTITION

- Empfohlene Lösung mit guter Balance zwischen Energieeffizienz und Investition.
- Je nach Systemstruktur ist diese Lösung normalerweise im Vergleich zu E1 günstiger, obwohl einige Einregulierventile und Differenzdrücke an Abzweigen erforderlich sind.
- Ausgezeichnete Mess- und Diagnosefähigkeiten der IMI TA-Ventile erlauben eine vollständige Systemdiagnose ohne zusätzliche Ausgaben für weitere Geräte.
- Rasche Rentabilität, normalerweise in weniger als 3 Jahren.
- Hohe Flexibilität. Das Heizungssystem kann stufenweise aufgebaut oder erweitert werden, ohne dass eine neuerliche hydraulische Einregulierung erforderlich wird. Es wird nur die Einstellung der Umwälzpumpe an die neuen Systemanforderungen angepasst - FERTIG.

DIMENSIONIERUNG

- Dimensionierung des Ventils entsprechend dem Nenndurchfluss und minimalen Druckverlust (1/3 des Gesamtdruckverlust des Abzweigs) zur Gewährleistung guter Regelautorität.
- Unter bestimmten Betriebssituationen kann es durch On/Off Regelung im Teillastfall zu erhöhten Durchflüssen kommen. Dies kann aber durch die richtige Projektberechnung begrenzt werden.
- Schließdruck für Stellantrieb muss geprüft werden.
- Wir empfehlen die Verwendung druckunabhängiger Einregulier- und Regelventile für separate, kleine Verbraucher, die direkt an die Hauptleitung angeschlossen sind, um hohe Regelautorität zu gewährleisten und zu hohen Durchfluss zu begrenzen.
- HySelect und IMI Hecos Software unterstützen Sie bei den hydronischen Berechnungen.


INBETRIEBNAHME

CIEUE ALICH

- Einfache Voreinstellung der Ventile entsprechend der hydronischen Berechnung, mit der Möglichkeit geringfügiger bauseitiger Anpassungen.
- Direkte Messung des tatsächlichen Durchflusses und des verfügbaren Differenzdrucks ermöglicht Ihnen die exakte Berechnung der erforderlichen Mindestpumpenförderhöhe.
- · Durchflussmessung bei einzelnen kleinen Regelventilen an Abzweigen ist möglich, jedoch nicht zwingend erforderlich.
- Die hervorragenden Diagnosefähigkeiten der IMI TA-Ventile erleichtern mittels TA-Scope das Erkennen und Lösen aller möglichen Systemfehler.

SIEHE AUC	Н		
A3 🙀	PIBCV	Druckunabhängige Einregulier- und Regelventile	Seite 11
A2 0	BCV	Kombinierte Einregulier- und Regelventile	Seite 9
A2 0	CVT	Regelventil mit Rücklauftemperatur-Regler TA-COMPACT-T	Seite 9
B1	BV	Einregulierventile	Seite 26
B4 🖟	DPC	Differenzdruckregler	Seite 31
C1 (EV	Ausdehnungsgefäße	Seite 37
C3 -	PSV	Sicherheitsventile	Seite 41
D1	ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44

- 1) Empfohlen zur Durchflussmessung und Systemdiagnose.
- 2) Optional, um erforderlichenfalls konstant Kaltwasser in der Zuleitung zu halten. TA-COMPACT-T, Einstellung 2K über Vorlauftemperatur. HINWEIS: max. Differenzdruck 2 bar
- 3) Beispiel für den Fall wenn die für AHU erforderliche Vorlauftemperatur höher ist als die allgemeine Vorlauftemperatur.
- 7) Dp-Regelung empfohlen, falls Regelventilautorität bei Systembetrieb wegen bedeutender Änderungen des Differenzdrucks unter 0,25 sinken kann.

Legende:

AHU Lüftungs-/Klimaanlage **PIBCV** Druckunabhängiges Einregulier- und Regelventil BCV Kombiniertes Einregulier- und Regelventil **PMS** Druckhaltesystem: Druckhaltung und Nachspeisung вт Pufferspeicher zur hydraulischen Entkopplung **PSV** BV Einregulierventil Entgaser (nicht erforderlich für Transfero Connect PMS, **VENTO** СНВ Deckenkühlgeräte da hier die Vakuumentgasung bereits integriert ist) CVT Regelventil mit Rücklauftemperatur-Regler **VSP** Pumpe mit Drehzahlregelung TA-COMPACT-T ZG Schlammabscheider DPC Differenzdruckregler **FCU** FanCoils

Kühlsystem – variabler Durchfluss

Einregulier- und Standardregelventile

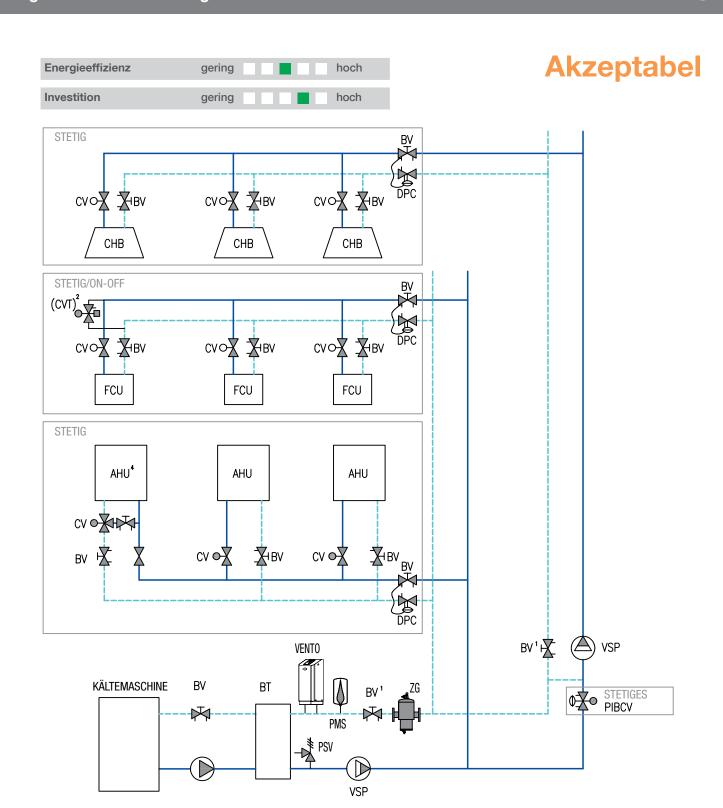
ENERGIEEFFIZIENZ

- Ermöglicht unter allen Betriebsbedingungen stabile und präzise Temperaturregelung, wenn die Regelventile richtig dimensioniert sind und eine gute Autorität erzielt wird.
- In der Ausführung mit modulierender Regelung wird die hohe Regelautorität der Ventile durch Differenzdruckregler gewährleistet, die den Differenzdruck stabilisieren
- Geringer Pumpenenergieverbrauch.
- · Pumpenförderhöhenoptimierung möglich.
- Minimale Wärmeeinträge in den Rücklaufleitungen.

INVESTITION

- Höhere Investition im Vergleich zu Lösung E2, Regelventile erfordern Einregulierventile.
- Größere Durchflüsse erfordern größere Einregulierventile und ∆p-Regler an Abzweigen (TA-PILOT-R senkt dank hohem Kv-Wert die Investitionskosten).
- Hervorragende Mess- und Diagnosefähigkeiten erlauben eine vollständige Systemdiagnose ohne zusätzliche Ausgaben für weitere Geräte.
- Hohe Flexibilität. Kühlsystem kann schrittweise aufgebaut werden. Es wird empfohlen, Abzweige fertigzustellen und Einregulierventil sowie ∆p-Regler zu dimensionieren, um hydraulische Interaktivität zu vermeiden.

DIMENSIONIERUNG


- Dimensionierung des Regelventils entsprechend dem Nenndurchfluss und minimalen Druckverlust (1/3 des Gesamtdruckverlust des Abzweigs ohne Regelventile bei Regelung über ∆p-Regler) zur Gewährleistung guter Regelautorität.
- Schließdruck für Stellantrieb muss geprüft werden.
- HySelect und IMI Hecos Software unterstützen Sie bei den hydronischen Berechnungen.

INBETRIEBNAHME

- Voreinstellung der Ventile nach hydraulischen Berechnungen mit der Option kleiner Korrekturen vor Ort
- Ap-Regler sollten entsprechend dem realen gemessenen Druckverlust des spezifischen Abzweigs eingestellt werden.
- Die Pumpenförderhöhe anhand der TA-Einreguliermethoden minimieren.
- Die hervorragenden Diagnosefähigkeiten der IMI TA-Ventile erleichtern mittels TA-SCOPE das Erkennen und Lösen aller möglichen Systemfehler.

SI	듸	Н	E	A	U	C	r	1

A3		PIBCV	Druckunabhängige Einregulier- und Regelventile	Seite 11
A2		CVT	Regelventil mit Rücklauftemperatur-Regler TA-COMPACT-T	Seite 9
A2		CV	3-Wege-/2-Wege-Regelventile	Seite 9
B1	×	BV	Einregulierventile	Seite 26
B4		DPC	Differenzdruckregler	Seite 31
C1		EV	Ausdehnungsgefäße	Seite 37
C3	-\$	PSV	Sicherheitsventile	Seite 41
D1	ф	ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44

- 1) Optional/empfohlen zur Durchflussmessung und Systemdiagnose
- 2) Empfohlen, um Kaltwasser in der Zuleitung zu halten (TA-COMPACT-T)
- 4) Beispiel für den Fall, wenn das Kühlsystem einen minimalen Durchfluss erfordert.

Legende:

AHU **PIBCV** Lüftungs-/Klimaanlage Druckunabhängiges Einregulier- und Regelventil Druckhaltesystem: BCV Kombiniertes Einregulier- und Regelventil **PMS** Druckhaltung und Nachspeisung ВТ Pufferspeicher zur hydraulischen Entkopplung **PSV** Sicherheitsventil CHB Deckenkühlgeräte **VENTO** Entgaser (nicht erforderlich für Transfero Connect PMS, CV 3-Wege-/2-Wege-Regelventil da hier die Vakuumentgasung bereits integriert ist) **CVT** Regelventil mit Rücklauftemperatur-Regler **VSP** Pumpe mit Drehzahlregelung TA-COMPACT-T ZG Schlammabscheider FCU FanCoils

Kühlsystem – variabler Durchfluss

Regelventile mit Rücklauftemperatur-Regler

ENERGIEEFFIZIENZ

- Einzigartige Kombination aus EIN/AUS-Regelung und gleichzeitiger Durchflusskorrektur am Ventil TA-COMPACT-T.
- Jederzeit die korrekte Rücklauftemperatur im gesamten System.
- · Kein Risiko von zu niedriger Rücklauftemperatur, keine Wirkungsgradreduktion der Kältemaschine.
- Minimale Wärmeeinträge in den Rücklaufleitungen.
- Geringer Pumpenenergieverbrauch.
- Steigert den Temperaturkomfort im Raum, wenn der Ventilator auf niedrigster Stufe läuft (geringeres Kältegefühl).

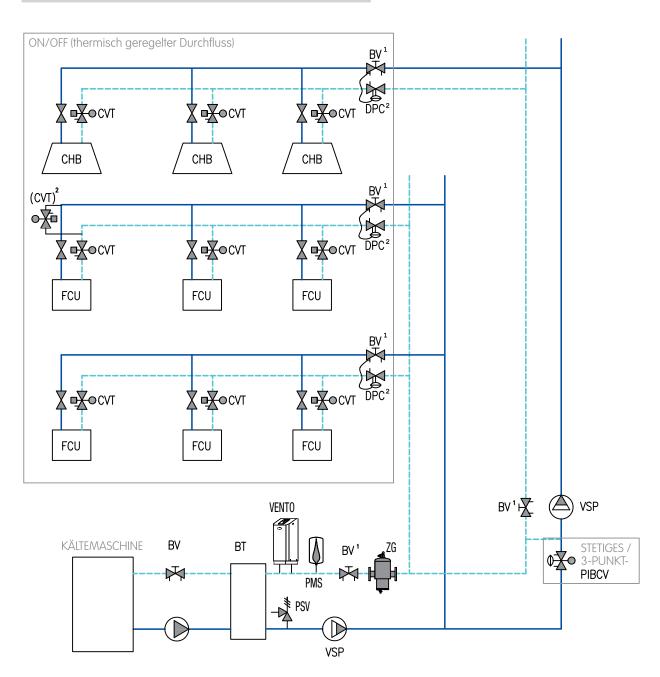
INVESTITION

- Geringe Investition in On/Off-Regelung mit Vorteilen der stetigen Regelung.
- Einfache Installation, geringe Anzahl an Ventilen.
- Hohe Flexibilität ermöglicht den schrittweisen Aufbau des Systems oder die Entfernung von Verbrauchern.

DIMENSIONIERUNG

- Ideale Lösung für Sanierungen, wenn es nur wenige Informationen zum bestehenden Leitungsnetz gibt.
- Dimensionierung des Ventils je nach Nenndurchfluss und erforderlichem P-Bereich des Rücklauftemperatur-Reglers.
- Δ p-Regler an Abzweigen werden empfohlen,
 - falls der maximale Differenzdruck überschritten werden kann
 - in großen Systemen im Nachtabsenkungsmodus, um das Anlaufen am Morgen zu beschleunigen
- Einfache Auswahl geeigneter On/Off-Stellantriebe.
- Nicht empfohlen bei Systemen, bei denen die Vorlauftemperatur nicht konstant ist.

INBETRIEBNAHME


- Einfache direkte Einstellung der geforderten Rücklauftemperatur.
- Einstellung der Pumpenförderhöhe entsprechend der hydronischen Berechnung, Proportionalregelung empfohlen.
- TA-COMPACT-T ermöglicht Ihnen die Rücklauftemperatur mittels TA-SCOPE zu berechnen und zu überwachen.

SIEHE AUC	Н		
A3 🖟	PIBCV	Druckunabhängige Einregulier- und Regelventile	Seite 11
A2 🙀	CVT	Regelventil mit Rücklauftemperatur-Regler TA-COMPACT-T	Seite 9
B1	BV	Einregulierventile	Seite 26
B4 🛱	DPC	Differenzdruckregler	Seite 31
C1	EV	Ausdehnungsgefäße	Seite 37
C3 -	PSV	Sicherheitsventile	Seite 41
D1	ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44

Energieeffizienz gering hoch

Empfohlen

- 1) Empfohlen zur Durchflussmessung und Systemdiagnose
- 2) Differenzdruckregler werden empfohlen, wenn max. Differenzdruck für CVT Ventile überschritten werden kann.

Legende:

BT BV	Pufferspeicher zur hydraulischen Entkopplung Einregulierventil	PMS	Druckhaltesystem: Druckhaltung und Nachspeisung
CHB	Deckenkühlgeräte	PSV	Sicherheitsventil
	9	VENTO	Entgaser (nicht erforderlich für Transfero Connect PMS,
CVT	Regelventil mit Rücklauftemperatur-Regler TA-COMPACT-T	72.11.0	da hier die Vakuumentgasung bereits integriert ist)
DPC	Differenzdruckrealer	VSP	Pumpe mit Drehzahlregelung
FCU	FanCoils	ZG	Schlammabscheider
PIBCV	Druckunabhängiges Einregulier- und Regelventil		

Kühlsystem – konstanter Durchfluss

Einregulier- und Standardregelventile

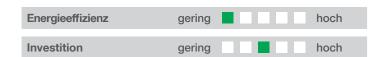
ENERGIEEFFIZIENZ

- Hohe Regelstabilität dank stabilem Differenzdruck im gesamten System.
- Hoher Pumpenenergieverbrauch, konstanter Durchfluss und Druckverlust des Systems.
- Im Teillastbetrieb hohe Wärmeeinträge in die Rücklaufleitungen.
- Niedrige Rücklauftemperatur wirkt sich negativ auf den Wirkungsgrad der Kältemaschinen aus.
- Verschmutzte Filter und zu hoher Durchfluss steigern die jährlichen Betriebskosten erheblich.

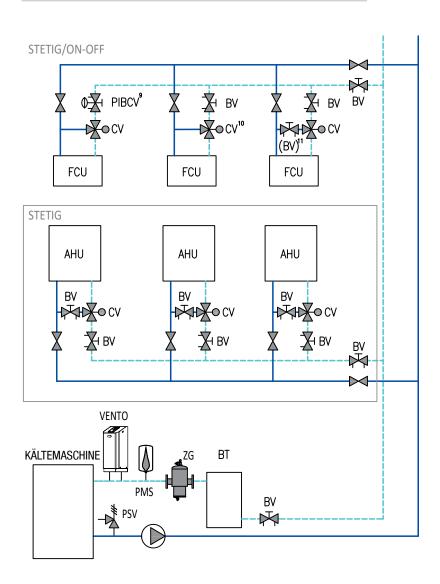
INVESTITION

- · Meistens Ventilanzahl höher.
- Keine Möglichkeit, einen Gleichzeitigkeitsfaktor anzuwenden um damit die Rohrdimensionen zu reduzieren.
- Längere Amortisationszeit der Hocheffizienzpumpen.
- Konstante Belastung verringert die Lebensdauer der Pumpen.

DIMENSIONIERUNG


- Eine hydraulische Berechnung ist für die 3-Wege-Regel- und -Einregulierventile erforderlich.
- Für eine hohe Regelautorität eines 3-Wege-Ventils ist der richtige Kv-Wert von entscheidender Bedeutung.
- 3-Wege-Ventile zur Regelung kleiner Verbrauchsgeräte erfordern einen geringeren kvs-Wert in Richtung AB-B zur Begrenzung eines zu hohen Durchflusses bei Teillast. Eine optionale Lösung wäre der Einsatz eines PIBCV-Ventils ohne Stellantrieb als Durchflussbegrenzer.
- HySelect und IMI Hecos Software unterstützen Sie bei den hydronischen Berechnungen.

INBETRIEBNAHME


- Voreinstellung der Einregulierventile entsprechend der hydronischen Berechnung.
- Einstellung der Pumpenförderhöhe zur Erzielung des konstanten Nenndurchflusses, konstante Geschwindigkeit ist zwingend erforderlich.
- Hydraulische Einregulierung oder einfache Durchflussmessung zur Überprüfung der realen Durchflussmenge wird empfohlen.
 Einregulierventile in AHU-Nebenleitungen müssen entsprechend dem Druckverlust der AHU-Anlage eingestellt sein. Vollständig geöffnete Einregulierventile erzeugen im Falle von geschlossenen 3-Wege-Regelventilen zu hohe Durchflüsse.

SIEHE AUCH **PIBCV** Druckunabhängige Einregulier- und Regelventile Seite 11 CV 3-Wege-/2-Wege-Regelventile Seite 9 BV Einregulierventile Seite 26 EV Ausdehnungsgefäße Seite 37 **PSV** Sicherheitsventile Seite 41

nicht empfohlen

- 3-Wege Ventil ohne verringerten kvs-Wert in Richtung B-AB ohne Möglichkeit zur Einregulierung der Nebenleitung, PIBCV ohne Stellantrieb wird zur Begrenzung des maximalen Durchflusses empfohlen.
- 10) 3-Wege Ventil mit verringertem kvs-Wert in Richtung B-AB.
- 11) Zum Einregulieren der Bypassleitung um den selben Druckverlust wie über das Lüftungsregister zu erreichen.

Legende:

Lüftungs-/Klimaanlage Druckhaltesystem: Druckhaltung und Nachspeisung AHU **PMS** ВТ Pufferspeicher **PSV** Sicherheitsventil BV Einregulierventil **VENTO** Entgaser (nicht erforderlich für Transfero Connect PMS,

CV 3-Wege-/2-Wege-Regelventil da hier die Vakuumentgasung bereits integriert ist) FCU

ZG Schlammabscheider **PIBCV** Druckunabhängiges Einregulier- und Regelventil

Extra – variabler Durchfluss

Automatische hydraulische Entkoppelungsschaltung bei variablen Durchflüssen

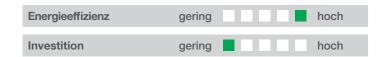
ENERGIEEFFIZIENZ

- Entkoppelt Kreise mit drehzahlgeregelten Pumpen zum Sparen von Antriebsenergie.
- Sehr gute Energieeffizienz, die perfekten und geräuscharmen Systembetrieb ohne gegenseitige hydraulische Beeinflussung gewährleistet.
- Pumpenförderhöhe der sekundären Pumpe kann durch den vom Differenzdruckregler gehaltenen Differenzdruck gesenkt werden (primäre unterstützt sekundäre Pumpe). Primäre Pumpe kann sekundären Kreis bei Ausfall der sekundären Pumpe versorgen.
- Keine Gefahr von zu niedriger (Kühlung) oder zu hoher (Heizung) Rücklauftemperatur, was sich auf die Energieeffizienz in der Produktion auswirkt.
- Geringer Pumpenenergieverbrauch (variabler Durchfluss).
- Minimale Wärmegewinne/-verluste in den Rücklaufleitungen.
- Die Vorlauftemperatur des Wassers entspricht der Temperatur aus der Produktion (primär).
- Höhere Energieeffizienz kann mit VSP-Fernreglern erzielt werden.
- Effektiver Regelkreis ohne Stellantrieb und konventionelles Steuerventil (DPC wird ohne Strom betrieben).

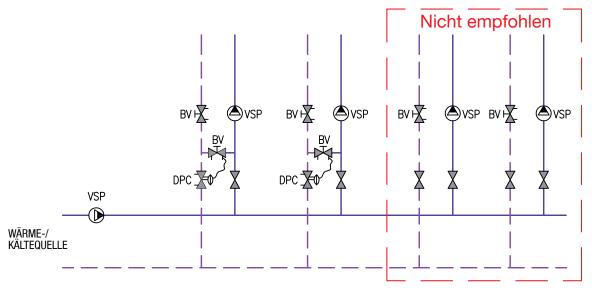
INVESTITION

- Sehr geringe Investition im Vergleich zu alternativen Lösungen, die weniger Energieeffizienz und ein komplexeres System bieten.
- Einfache Installation, minimaler Platzbedarf.
- Ideale Lösung für Kreise mit höherem Druckverlust, die jedoch an ein Netz mit niedrigerem verfügbarem Differenzdruck angeschlossen sind, Investition für neue primäre Pumpe nicht erforderlich.
- Rasche Rentabilität.
- · Geräuscharmer Betrieb, keine Beschwerden.

DIMENSIONIERUNG


- Der Bypass-Durchfluss beträgt in der Regel nicht mehr als 10 % des Durchflusses an der Quelle; das ist der Grund, weshalb Bypass-Ventile kleine Durchmesser haben
- Keine Notwendigkeit für zusätzliche Lösungen zur Gewährleistung einer Mindestdurchflussmenge für die primäre Pumpe
- Ap-Regler ist auf sekundären Nenndurchfluss konzipiert, Druckverlust wird von der primären Pumpe aufgebracht.

INBETRIEBNAHME


- Einfache Voreinstellung des Einregulierventils in der Nebenleitung.
- Einstellung des Differenzdrucks am Δp-Regler durch Messung des Sekundärdurchflusses.

SIEHE AUCH

B1 🔀	BV	Einregulierventile	Seite 26
B4 🖟	DPC	Differenzdruckregler	Seite 31

Empfohlen

Primär- und Sekundärpumpen arbeiten in Reihe

Der autoadaptive Entkopplerkreislauf mit variablem Durchfluss ist die ideale Lösung für variable primäre und sekundäre Kreise, wenn die sekundäre Pumpe zur hydraulischen Entkopplung des Differenzdrucks von der primären Pumpe genutzt werden muss.

Die Vorlauftemperatur des Wassers entspricht der Temperatur aus der Produktion (primär).

Nenndurchfluss durch die Nebenleitung beträgt typischerweise 10% des gesamten sekundären Durchflusses, daher ist das Einregulierventil der Nebenleitung kleiner dimensioniert.

Mindestdurchflussrate durch Nebenleitungen lässt sich auch anhand des Mindestdurchflusses der primären Pumpe ermitteln.

Weitere Informationen zur Dimensionierung und hydraulischen Einregulierung erhalten Sie von unseren Fachleuten aus der technischen Beratung von IMI Hydronic Engineering.

Legende:

BV Einregulierventil
DPC Differenzdruckregler
VSP Pumpe mit Drehzahlregelung

Extra – variabler Durchfluss

Zonenregelung (z.B. Heizen in Appartments)

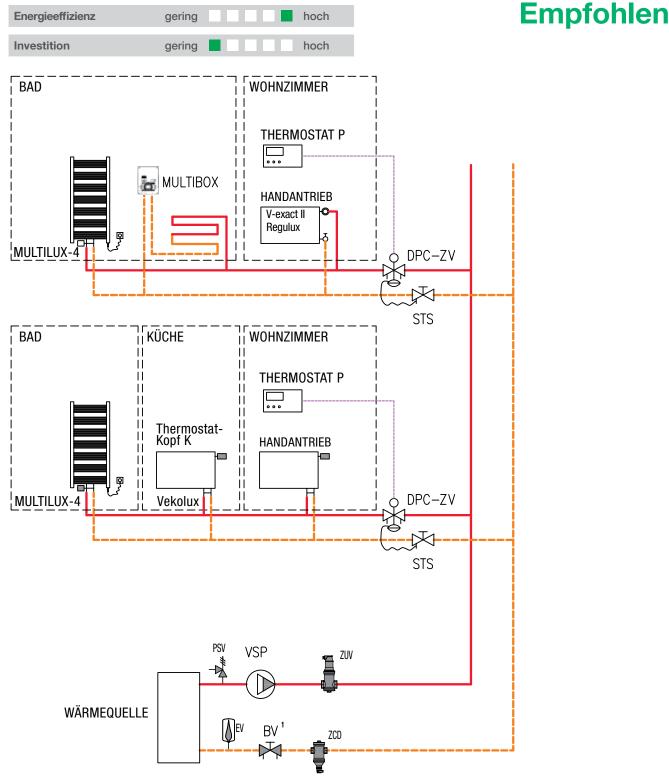
ENERGIEEFFIZIENZ

- Eine Zonenregelung kann die Energiekosten um bis zu 20 % senken.
- Tagsüber, wenn kein Bewohner anwesend ist, wird die Wohnungstemperatur abgesenkt.
- Ermöglicht eine zentrale Nachtabsenkung.
- Begrenzt den maximalen Durchfluss zur Wohnung und spart Pumpenenergie.
- Schützt vor Geräuschentwicklung in der Anlage.

INVESTITION

- TA-COMPACT-DP ersetzt 3 Einzelventile: Zonenregelventil, Einregulierventil und Differenzdruckregler das spart 60 % der Kosten.
- 3x schnellere Installation.
- Die ideale Lösung für Wohnungen mit einer zentrale Wärmequelle (Wärmepumpe, Boiler, Zentralheizung).
- Geräuscharmer Betrieb ohne zu hohe Durchflüsse, keine Beschwerden.

DIMENSIONIERUNG


- Vereinfachte Größenanpassung an den geforderten Nenndurchfluss und Differenzdruck für den Heizkreis.
- Kein zusätzlicher Einsatz von Ap-Reglern und Einregulierventilen an Abzweigen erforderlich.
- Verwenden Sie zum Abstimmen der richtigen Lösung die Berechnungssoftware von IMI Hydronic Engineering oder nutzen Sie den technischen Support.

INBETRIEBNAHME

- Einfache Einstellung der geforderten Durchflussmenge.
- Durchflussmessung mittels TA-SCOPE.
- Sehr kompakte Bauweise für den Einbau bei beengten Platzverhältnissen.
- Stellantrieb EMO-T mit Schutzklasse IP54 ermöglicht die freie Wahl der Einbaulage.

SIEHE AU	СН		
B1 ⋉	BV	Einregulierventile	Seite 26
B4 🖟	DPC	Differenzdruckregler	Seite 31
B4 🕸	DPC-ZV	Differenzdruckregler mit Zonenregelventil (TA-COMPACT-DP)	Seite 31
C1	EV	Ausdehnungsgefäße	Seite 37
C3 -	PSV	Sicherheitsventile	Seite 41
	ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44

Weitere Informationen siehe www.imi-hydronic.de.

1) Empfohlen zur Durchflussmessung und Systemdiagnose

Legende:

BV Einregulierventil

CALYPSO EXACT Thermostat-Ventilunterteil mit Voreinstellung

DPC-ZV Differenzdruckregler mit Zonenregelventil (TA-COMPACT-DP)

EV Ausdehnungsgefäß K-Kopf Thermostat-Kopf

Multibox Wandmontierte Regelung für Fußbodenheizung

MULTILUX-4 Heizköperthermostatventil mit Voreinstellung

PSV Sicherheitsventil

REGUTEC Heizkörperverschraubung

STS Absperrventil mit Messnippel und Kapillaranschluss

Thermostat P Elektronischer Raumthermostat
VEKOLUX Heizkörper-Absperrarmatur
VSP Pumpe mit Drehzahlregelung
ZCD Schmutz- und Schlammabscheider
ZUV Abscheider für Mikroblasen

4-Leiter Heiz- und Kühlsystem

variabler Durchfluss

ENERGIEEFFIZIENZ

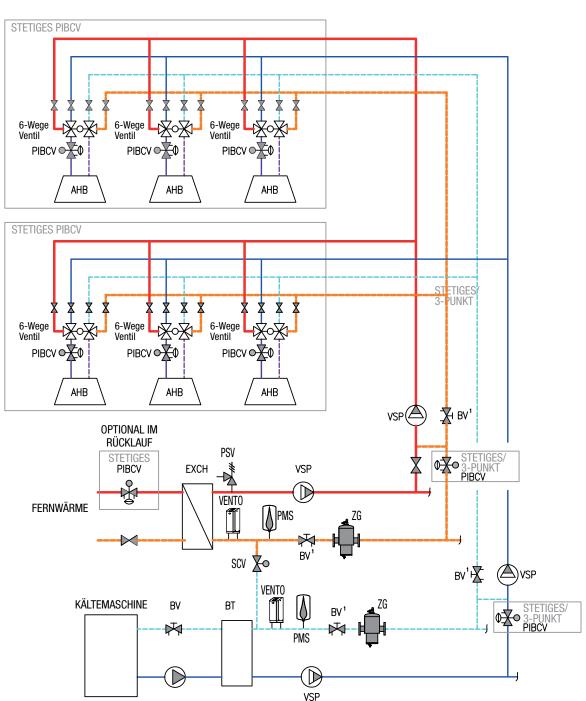
- Bietet stabile und präzise Temperaturregelung unter sämtlichen Betriebsbedingungen.
- Jeweils der exakte Volumenstrom für den Heiz- und Kühlfall.
- Motorischer Antrieb mit sehr geringer Stand-By Leistungsaufnahme.
- Druckunabhängige Regelung mit hoher Regelautorität für stetige/3-Punkt-Regelung.
- Geringer Pumpenenergieverbrauch (kein zu hoher Durchfluss).
- Sehr geringer Druckverlust der IMI TA-Ventile verringert den Bedarf an Pumpenförderhöhe.
- · Minimierter Wärmeverlust in den Rücklaufleitungen durch niedrigst mögliche Rücklauftemperaturen.

INVESTITION

- Lösung mit kleinstmöglicher Anzahl an installierten Ventilen.
- Günstigere Stellantriebe können verwendet werden (niedrigerer Schließdruck erforderlich).
- Ventile von IMI TA bieten einzigartige Mess- und Diagnosefunktionen für eine vollständige Systemdiagnose ohne zusätzliche Kosten
- Rasche Rentabilität (Spitzenqualität, extreme Langlebigkeit, hohe Energieeinsparungen).
- Keine zusätzlichen Armaturen für Differenzdruckstablisierung notwendig.
- Günstiges 6-Wegeventil ohne spezielle KVs-Wert-Einsätze in den Abgängen.
- Hohe Flexibilität. Das Heizungssystem kann stufenweise aufgebaut oder erweitert werden, ohne dass eine neuerliche hydraulische Einregulierung erforderlich wird. Es wird nur die Einstellung der Umwälzpumpe an die neuen Systemanforderungen angepasst FERTIG.

DIMENSIONIERUNG

- Einfache Ventildimensionierung entsprechend dem größeren Nenndurchfluss.
- Einfache Auswahl des 6-Wegeventils ohne Kvs-Wert Berechnung, da als reines Umschaltventil verwendet.
- Prüfen der Regelventilautorität nicht erforderlich.
- Einfache Auswahl des geeigneten Stellantriebs.
- HySelect unterstützt Sie bei den hydronischen Berechnungen.


INBETRIEBNAHME

- Einfache Voreinstellung des maximalen Durchflusses an jedem Ventil.
- Einstellung der Durchflüsse und aller Parameter direkt mit Hilfe der HyTune App.
- Einstellungen erfolgen menügeführt und werden in der HyTune App graphisch dargestellt.
- Parametereinstellungen auf weitere idente Antriebe einfach duplizierbar.
- Die direkte Messbarkeit des Durchflusses sowie des anstehenden Differenzdruckes unterstützen Sie bei der Optimierung der Pumpenförderhöhe zur Erzielung der höchstmöglichen Energieeffizienz.
- Die hervorragenden Diagnosefähigkeiten der IMI TA-Ventile erleichtern mittels TA-SCOPE das Erkennen und Lösen aller möglichen Systemfehler.

E AUC	SH .		
%	PIBCV	Druckunabhängige Einregulier- und Regelventile	Seite 11
	TA-Slider	Stellantriebe	Seite 17
	TA-6-Wege-Ventil	Regelventiles	Seite 21
⋈	BV	Einregulierventile	Seite 26
	EV	Ausdehnungsgefäße	Seite 37
-1	PSV	Sicherheitsventile	Seite 41
ф	ZG	Entlüfter, Schmutzabscheider und Entgasung	Seite 44
		TA-Slider TA-6-Wege-Ventil BV EV PSV	PIBCV Druckunabhängige Einregulier- und Regelventile TA-Slider Stellantriebe TA-6-Wege-Ventil Regelventiles BV Einregulierventile EV Ausdehnungsgefäße PSV Sicherheitsventile

Energieeffizienz gering hoch Investition hoch

Empfohlen

1) Empfohlen zur Durchflussmessung und Systemdiagnose

Legende:

AHB	Deckenstrahlplatten
BT	Pufferspeicher
BV	Einregulierventil
EV	Ausdehnungsgefäß
EXCH	Wärmetauscher
FCU	FanCoils
SCV	Wenn das PMS ein Transfero/Compresso Connect ist, wird empfohlen, die Druckhalteeinheiten in Master-Slave-IO zu betreiben (isolierter Betrieb). Dies sorgt für einen automatischen und ökonomischen Volumenausgleich aufgrund der natürlichen und unvermeidlichen Volumenübertragung beim Betrieb von Change-Over-Systemen.

PIBCV	Druckunabhängiges Einregulier- und Regelventil (TA-	

Modulator) mit TA-Slider 160 Stellantrieb (automatische Einstellung des geplanten Durchflusses für Heizung und

PMS

Druckhaltesystem: Druckhaltung und Nachspeisung

Sicherheitsventil

TA-6-Wege Ventil Spezielles Ventil, um zwischen Heizen und Kühlen zu

VENTO Entgaser (nicht erforderlich für Transfero Connect PMS, da hier die Vakuumentgasung bereits integriert ist)

VSP Pumpe mit Drehzahlregelung

83 ZG Schlammabscheider

Entdecken Sie, wie maßgeschneiderte Produkte, wertsteigernde Dienstleistungen und Effizienz bei der Inbetriebnahme maßgeblich zum Erfolg dieses Projekts beigetragen haben.

OPP Kalvebod Brygge ist ein neu errichtetes Bürogebäude im Stadtzentrum von Kopenhagen mit einer Fläche von 40.000 Quadratmetern. Wichtige Akteure aus der Region wie etwa die dänische Bahngesellschaft, die dänische Energieagentur, die dänische Behörde für Verkehr, Bau und Wohnungswesen sowie das dänische Straßendirektorat sind darin beherbergt.

Die Aufgabe

Das Projekt ist eine
Zusammenarbeit des öffentlichen
und privaten Sektors, bei dem
die Projektabwicklung, die
Inbetriebnahme, der tägliche
Betrieb, die Instandhaltung und
die Finanzierung durch einen
einzigen Vertrag zwischen der
Regierung und dem Privatsektor
geregelt wurde.

Hierzu waren hoch zuverlässige Lösungen und eine pünktliche Lieferung der Produkte notwendig. Zudem stellte der Anbieter des GLT (Gebäudeleitsystem) spezielle Anforderungen, denn er bevorzugte KNX-Lösungen und Stellantriebe mit geringer Lichtbzw. Lärmemission, um die Umwelteinwirkungen so gering wie möglich zu halten.

Die Lösung

Unser Stellantrieb TA-Slider 160 KNX war die optimale Antwort auf die Bedürfnisse des Kunden und erfüllt die Anforderungen des BMS-Anbieters. Dank einer maßgeschneiderten Lösung von IMI Hydronic Engineering konnte das KNX-Protokoll so angepasst werden, dass sich die LEDs des Stellantriebs bei Bedarf abschalten lassen.

Darüber hinaus verschaffte dieser digital konfigurierbare Stellantrieb dem Anlagenbauer einen Wettbewerbsvorteil aufgrund der schnellen und zuverlässigen Produktinbetriebnahme.

Ferner wird der Betrieb in Zukunft von dem Gebäudeleitsystem profitieren, weil jederzeit die effektive Funktion sichergestellt ist.

Das Ergebnis

IMI Hydronic Engineering lieferte 1550 TA-Slider 160 KNX Stellantriebe und konnte in diesem Zusammenhang auch 1550 Heizkörper-Thermostatventil des Typs Calypso TRV-3 liefern.

Zuverlässige Produkte, wertsteigernde Dienstleistungen und Effizienz bei der Inbetriebnahme waren definitiv die wesentlichen Aspekte, die zum Erfolg dieser Zusammenarbeit beigetragen haben.

FAKTEN	
Projektart:	Bürogebäude
Ort:	Kopenhagen, Dänemark
Eigentümer:	Bygningsstyrelsen
Beratung:	MOE A/S
Architekt:	Arkitema Architects
System- integrator:	Grue & Hornstrup
Bruttofläche:	40,000 m ²

INSTALLIERTE PRODUKTE:

- TA-Slider 160 KNX
- Calypso TRV-3

Entdecken Sie, wie digital konfigurierbare Stellantriebe hoch leistungsfähige Klimaregelungstechnologien für 18.000 Wohneinheiten gewährleisten.

Von der Konzeption bis zur Fertigstellung wurde ein optimales Raumklima für den NSHAMA Town Square geplant und installiert.

Der NSHAMA Town Square in Dubai, ein neues Megaprojekt für modernstes Wohnen, umfasst 3.000 Stadthäuser, 18.000 Wohnungen sowie eine Reihe von gastronomischen Einrichtungen auf einer Fläche von insgesamt rund 300 Hektar.

Die Aufgabe

Die Sicherstellung effektiver, hoch leistungsfähiger Klimaregelungstechnologien war für den Erfolg des Projekts entscheidend. Die Experten von IMI Hydronic Engineering waren von Beginn an an der Planung beteiligt. Mit der Software HySelect führten sie die hydronischen Berechnungen durch, um die ideale Systemkonfiguration für den Kunden zu entwickeln.

HySelect ermöglicht es unseren Ingenieuren, die optimale Pumpenförderhöhe für die Anlage festzulegen, den Schlechtpunkt zu bestimmen und die beste Position und Einstellung des Pumpensensors zu ermitteln, um vor der Installation ein Kaltwassernetz mit bestmöglicher Energieeffizienz bereitzustellen.

Die Lösung

Für die maßgeschneiderte Lösung war eine innovative Kombination aus einer Reihe von führenden IMI TA-Lösungen notwendig, um die anspruchsvollen Anforderungen des Kunden erfüllen zu können. Nicht nur Standard, sondern auch unsere bahnbrechenden digital konfigurierbaren Stellantriebe wurden installiert, zusammen mit kombinierten Einregulier- und Regelventilen, Einregulierventilen und einer Kombination aus anderen Komponenten.

Die Einbindung der Experten von IMI Hydronic Engineering bereits ab der Planungsphase führte zu einem signifikanten Mehrwert über den gesamten Projektlebenszyklus. Die Lösung sorgt für ein ideales Raumklima, minimiert den Verschleiß kritischer Systemkomponenten und wird über Jahre hinaus eine optimale Energieeffizienz liefern.

FAKTEN	
Projektart:	Wohnkomplex
Ort:	Dubai, UAE
Beratung:	Arif & Bintoak
Bruttofläche:	300 Hektar

INSTALLIERTE PRODUKTE:

- TA-FUSION
- TA-Slider 160
- TA-Slider 750
- EMO TM
- STAF

- TA-BAV
- TA 60
- TA-BTV
- TA-STR
- TA-NRV

Entdecken Sie, wie das TA-6-Wege-Ventil eine effiziente Regelung für ein kombiniertes Kalt- und Warmwasser-Klimaregelungssystem gewährleistet.

Als weltweit erster Community
Hub schafft der Harbord Diggers
Memorial Club ein ideales
Raumklima für Unterhaltung,
Freizeit und Wohlbefinden.

Ziel der Neugestaltung des Harbord Diggers Memorial Club ist vor allem eine Verbesserung der Lebensqualität der Menschen in der Gemeinde – Jung und Alt. Neben einem sicheren Wohnumfeld für ältere Bewohner bietet der Komplex gleichzeitig exzellente Freizeiteinrichtungen für die Gemeinde insgesamt.

Die Aufgabe

Die gemischte Nutzung
des Projekts erforderte ein
hydronisches System, das
sowohl für eine Kaltwasserals auch eine WarmwasserKlimaregelung geeignet ist.
Außerdem waren innovative
Technologien zur Ablaufsteuerung
notwendig, um die Rohrleitungen
und Regelkomponenten auf ein
Mindestmaß zu reduzieren und
die verfügbaren Platzverhältnisse
bestmöglich auszunutzen.

Die Lösung

Ein stetiges Regelungs-System zur Bereitstellung einer exakten Durchflussregelung zu den Verbrauchern wurde als optimale Lösung erachtet. **IMI Hydronic Engineering** plante eine maßgeschneiderte Lösung mit einer Kombination aus unseren bahnbrechenden digital konfigurierbaren Stellantrieben TA-Slider 160 mit Bus-Kommunikation, druckunabhängigen Einregulierund Regelventilen, dem TA-Modulator und dem erst kürzlich eingeführten TA-6-Wege-Ventil.

Eine revolutionäre Lösung, die eine präzise Regelung von Heizund Kühlmodus über ein einziges Rohrleitungssystem ermöglicht. Neben einer beispiellosen Präzision bei der Durchflussregelung begrenzt diese Lösung außerdem den Bedarf an Ventilen und Stellantrieben auf ein Minimum und senkt somit die Gesamtkosten bei geringem Platzbedarf. Und dank der Flexibilität und Benutzerfreundlichkeit unserer programmierbaren digitalen Stellantriebe war es nie einfacher, maximale und minimale Durchflussmengen sowie ein komfortables Raumklima per Knopfdruck zu gewährleisten.

FAKTEN	
Projektart:	Freizeiteinrichtung
Ort:	Australien
Developer:	Mounties Group
Bruttofläche:	47.655 m ²

INSTALLIERTE PRODUKTE:

- TA-6-Wege-Ventil
- TA-Slider 160 Plus
- TA-Modulator

Ihr starker Partner mit weltweiter Erfahrung

Maracanã Stadium, Rio de Janeiro

Unsere Regel- und Einregulierventile versorgen Brasiliens größtes Stadion mit einem energieeffizienten Raumklima mit einer Kühlkapazität von 10,6 MW.

111 JAHRE ERFAHRUNG

Gardens by the Bay, Singapore

Burj Khalifa Tower, Dubai

Das höchste Gebäude der Welt – 828 Meter, 160 Stockwerke, 8.000 Ventile von IMI TA, in Betrieb genommen von IMI Hydronic Engineering. Orhideea Towers, Bukarest

Eine komplette Lösung zur Raumtemperaturregelung von IMI TA wurde installiert, um das Raumklima auf 37.000 m² Gewerbefläche sicher zu stellen.

Le Trèfle Building, Genf

Inbetriebnahme eines Changeover-Systems mit 1.000 TA-Slider 160 Plus Stellantrieben. Die digitale Konfiguration mit dem TA-Dongle verkürzte die Inbetriebnahmezeit auf 50% der ursprünglich angedachten Lösung.

www.imi-hydrnoic.de www.imi-hydronic.at www.imi-hydronic.ch